For Which Activation Functions, Any Neural Network Is Equivalent to a Takagi-Sugeno Fuzzy System with Constant or Linear Outputs?

Barnabas Bede¹, Olga Kosheleva², and Vladik Kreinovich³

¹DigiPen Institute of Technology, 9931 Willows Rd., Redmond, WA 98052, USA, bbede@digipen.edu ^{2,3}Departments of ²Teacher Education and ³Computer Science University of Texas at El Paso, 500 W. University, El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu

1. Need for explainable AI

- Many recent results of using deep neural networks are spectacular.
- However, there is a problem: these results are often not explainable.
- This is important in social applications.
- E.g., when the neural network is used to decide whether to give a loan, whether to apply some treatment to a patient, etc.
- The need for an explanation comes from the fact that the neural networks are not perfect, they sometimes produce wrong answers.
- Of course, human decision makers are also not perfect.
- However, with a human decision maker, you can always ask for reasons for his/her decision.
- Thus, we can check how convincing these reasons are and, based on this, filter out some incorrect decisions.
- For a neural system, usually no reasons are provided, so it is not easy to filter out wrong decisions.

2. Translation into fuzzy as a possible first step towards explainability

- Explainability means to be able to describe the decision in humanunderstandable, natural-language terms.
- So, to achieve explainability, a natural idea is to look for existing techniques that relate:
 - natural-language explanations with
 - precise computer-based decisions.
- This immediately brings us into the realm of fuzzy techniques.
- Indeed, these techniques were specifically designed:
 - to translate natural-language expert recommendations
 - into precise computer-understandable form.
- Of course, translation into natural language does not necessarily mean that we already have a convincing explanation.
- However, in general, this may be a first step towards an explanation.

3. Question that we deal with in this talk

- There are many different versions of fuzzy techniques and many different types of neural networks.
- A neural network usually consists of *neurons* each of which:
 - takes values x_1, \ldots, x_n and
 - produces a value $y = s(a_0 + a_1 \cdot x_1 + \ldots + a_n \cdot x_n)$.
- Here, a_i are numerical coefficients that are determined during the network's training.
- The function s(z) is a continuous function known as an activation function.
- Some neurons process the inputs $v = (v_1, \ldots, v_m)$ to the network.
- Other neurons process the outputs of previously active neurons.
- One of the outputs of one of the neurons is then returned to the user as the computation result V.

4. Question that we deal with in this talk (cont-d)

- Traditional neurons use the sigmoid function $s(z) = 1/(1 + \exp(-z))$.
- Most current networks use ReLU function $s(z) = \max(0, z)$.
- Many other activation functions have been proposed and effectively used.
- As fuzzy techniques, we will use one of most widely used versions: Takagi-Sugeno techniques.
- In this technique, a function $V = f(v_1, \ldots, v_m)$ is characterized by rules of the type

if
$$m_i(v)$$
 then $f_i(v)$.

- Here $0 \le m_i(v) \le 1$ for all i and v and the functions $f_i(v)$ are usually either constants or linear functions.
- The function computed by this technique is $f(v) = \frac{\sum_{i} m_i(v) \cdot f_i(v)}{\sum_{i} m_i(v)}$.

5. Question that we deal with in this talk (cont-d)

- A natural question is: for what activated functions the following is true:
 - every function computed by the corresponding neural network
 - can also be computed by a TS system?
- In this talk, we provide an answer to this question.

6. What if we use Takagi-Sugeno systems with constant outputs: result

For each function s(z), the following two conditions are equivalent to each other:

- the function s(z) is bounded, i.e., there exists a bound B such that $|s(z)| \leq B$ for all z, and
- every function computed by a network of neurons with this activation function can be computed by a TS system with constant outputs.

7. Proof

- The value V computed by a TS system is a convex combination of the values $f_i(v)$.
- So, when all the outputs $f_i(v)$ are constants $f_i(v) = f_i$, all the values V are bounded by the largest of the absolute values $|f_i|$.
- Hence, every function computed by a TS system with constant outputs is bounded.
- Thus:
 - if a function s(z) is not bounded,
 - then this same function computed by a single neuron cannot be computed by a TS system with constant outputs.

- So, to complete the proof, it is sufficient to prove that:
 - if the activation function is bounded,
 - then any function computed by the corresponding neural network can also be computed by a TS system with constant outputs.
- Indeed, the value V = f(v) computed by a neural network comes from one of the neurons.
- It is, thus, bounded by the bound $B: -B \le f(v) \le B$.
- So, to compute this function, we can use the following two Takagi-Sugeno rules:

if
$$\frac{f(v) + B}{2B}$$
 then B; if $\frac{B - f(v)}{2B}$ then $-B$.

• In this case, the sum of the two functions $m_i(v)$ is 1:

$$\frac{f(v) + B}{2B} + \frac{B - f(v)}{2B} = \frac{2B}{2B} = 1.$$

• So the result V of this system is simply equal to

$$m_1(v) \cdot f_1(v) + m_2(v) \cdot f_2(v) = \frac{f(v) + B}{2B} \cdot B + \frac{B - f(v)}{2B} \cdot (-B) = \frac{f(v) + B}{2} - \frac{B - f(v)}{2} = \frac{f(v) + B - B + f(v)}{2} = \frac{2f(v)}{2} = f(v).$$

• The proposition is proven.

10. Discussion

- A similar result with the same proof holds if we consider a neural network in which:
 - different neurons
 - can have different activation functions.
- The only condition we need is that all these activation functions are bounded.
- Proposition. For each neural network in which all activation functions are bounded:
 - every function computed by this network
 - can also be computed by a Takagi-Sugeno system with constant outputs.
- A similar argument shows that if we limited ourselves to a bounded domain D of values v.

11. Discussion (cont-d)

• Then the result of any neural network, with any activation function, can be computed by a Takagi-Sugeno system with bounded outcomes.

• Proposition.

- Let D be a bounded domain.
- Let there be a neural network with any activation functions that computes some function f(v).
- Then there exists a Takagi-Sugeno system with constant outputs that computes f(v) for all v from the domain D.

12. Proof

- By definition, the function computed by a neural network is a composition of functions computed by individual neurons.
- Since all activation functions are continuous, the function computed by each neuron is continuous.
- Thus, the overall function computed by a neural network is continuous.
- A continuous function on a bounded domain is always bounded.
- Thus, we can use the construction from the proof of the first Proposition.

13. What if we use Takagi-Sugeno systems with linear outputs

• We say that a function $f(x_1, ..., x_n)$ is *linearly bounded* if there exist positive coefficients $c_0, c_1, ..., c_n$ for which we always have

$$|f(x_1,\ldots,x_n)| \le c_0 + c_1 \cdot |x_1| + \ldots + c_n \cdot |x_n|.$$

- For example, every linear function is linearly bounded, as well as each function computed by a single ReLU neuron.
- Proposition. For each function s(z), the following two conditions are equivalent to each other:
 - the function s(z) is linearly bounded, and
 - every function computed by a network of neurons with this activation function can be computed by a TS system with linear outputs.

14. Proof

- ullet Since all linear outputs are linearly bounded, one can easily check that their convex combination V is also linearly bounded.
- So, if an activation function is not linearly bounded, it cannot be computed by such a Takagi-Sugeno system.
- So, to prove this result, it is sufficient to prove that:
 - every function computed by a neural network consisting of neurons with linearly bounded neurons
 - can be computed by a Takagi-Sugeno system with linear outputs.
- It is easy to prove that the composition of linearly bounded functions is also linearly bounded.
- So, the function f(v) computed by a neural network is also linearly bounded: $|f(v)| \le c_0 + c_1 \cdot |v_1| + \ldots + c_m \cdot |v_m|$ for some $c_i > 0$.

- To proceed, we will use the following simple result: that:
 - $-if |x| \le a + b$ for some a > 0 and b > 0,
 - then we can represent x as $x = x_a + x_b$, where $|x_a| \le a$, $|x_b| \le b$,
 - and for fixed a and b, both x_a and x_b continuously depend on c.
- Indeed, let us take, as x_a , the closest to x value from the interval [-a, a], i.e.:
 - $\text{ if } -a \leq x \leq a, \text{ we take } x_a = x;$
 - if x > a, we take $x_a = a$; and
 - if x < -a, we take $x_a = -a$.
- In all three cases, we can check that for $x_b = x x_a$, we have $|x_b| \leq b$.
- In the first case, $x_b = 0$, so this inequality is clearly satisfied.
- In the second case, we get $x_b = x a$.
- From $x \leq a + b$, we conclude that $x a \leq b$, i.e., indeed, $x_b \leq b$.

- Since x > a, we have $x_b = x a > 0$ and thus, indeed, $x_b \ge -b$.
- The third case can be proved similarly.
- If we have $|x| \le a_1 + \ldots + a_k$ for some $a_i > 0$, then:
 - by applying the above simple result first,
 - we can conclude that $x = x_1 + x_{-1}$, where $|x_1| \le a_1$ and

$$|x_{-1}| \le a_2 + \ldots + a_k.$$

- By applying this result again, this time to x_{-1} , we can conclude that $x_{-1} = x_2 + z_{-2}$, where $|x_2| \le a_2$ and $|x_{-2}| \le a_3 + \dots$, etc.
- After k-1 steps, we conclude that $x=x_1+\ldots+x_k$, where $|x_i| \leq a_i$.
- Let us apply this result to the inequality

$$|f(v)| \le c_0 + c_1 \cdot |v_1| + \ldots + c_m \cdot |v_m|.$$

• Then, we conclude that the function f(v) is equal to the sum $f(v) = F_0(v) + F_1(v) + \ldots + F_m(v)$, where $|F_0(v)| \le c_0$ and $|F_i(v)| \le c_i \cdot |v_i|$.

• Then, we can represent this function by using the following rules:

"if
$$m_i^{\pm}(v)$$
 then $f_i^{\pm}(v)$ " and "if $1/(m+1)-m_i^+(v)-m_i^-(v)$ then 0",

• Here:

$$\begin{split} m_0^+(v) &= \frac{1}{m+1} \cdot \max\left(0, \frac{F_0(v)}{c_0}\right), \ m_0^-(v) = \frac{1}{m+1} \cdot \max\left(0, -\frac{F_0(v)}{c_0}\right), \\ m_i^+(v) &= \frac{1}{m+1} \cdot \max\left(0, \frac{F_i(v)}{c_i \cdot v_i}\right), \ m_i^-(v) = \frac{1}{m+1} \cdot \max\left(0, -\frac{F_i(v)}{c_i \cdot v_i}\right), \\ f_0^+(v) &= (m+1) \cdot c_0, \ f_0^-(v) = -(m+1) \cdot c_0, \\ f_i^+(v) &= (m+1) \cdot c_i \cdot v_i, \ f_-^-(v) = -(m+1) \cdot c_i \cdot v_i. \end{split}$$

- In this case, the sum of all the functions $m_i(x)$ is 1, so the formula for TS turns into a simple sum of products.
- Let us show that for each i, the sum of the corresponding product terms in the formula is equal to $F_i(v)$.

- This will guarantee that the sum of all the terms corresponding to all i is indeed equal to the desired function f(v).
- Indeed, when $F_i(v)/(c_i \cdot v_i) > 0$, then we have

$$m_i^+(v) \cdot f_i^+(v) = \frac{1}{m+1} \cdot \frac{F_i(v)}{c_i \cdot v_i} \cdot (m+1) \cdot c_i \cdot v_i = F_i(v).$$

- In this case, two other products corresponding to i are 0s:
 - the second because $m_i^-(v) = 0$ and
 - the third because the corresponding output function is 0.
- The proof for the case when $F_i(v)/(c_i \cdot v_i) < 0$ is similar.
- The proposition is proven.

19. Discussion

- To represent each function, we used 3m + 3 rules a very feasible amount.
- We could get slightly fewer rules, namely, 3m+2, if, to describe $F_0(v)$, we would use a construction from the first Proposition.
- A similar result with the same proof holds if we consider a neural network in which:
 - different neurons
 - can have different activation functions.
- The only condition is that all these activation functions are linearly bounded.
- Proposition. Suppose that we have a neural network in which all activation functions are linearly bounded; then:
 - every function computed by this network
 - can be computed by a Takagi-Sugeno system with linear outputs.

20. Discussion (cont-d)

- These results cannot be directly extended to the case when an activation function is:
 - quadratically bounded,
 - i.e., bounded by some quadratic function of the inputs.
- Indeed, in this case, functions computed by Takagi-Sugeno systems are still quadratically bounded.
- However, a composition of two quadratic neurons, with $s(z) = z^2$, already computes a function z^4 .
- The function z^4 grows faster than any quadratic function.

21. Discussion (cont-d)

- \bullet Thus, the function z^4 cannot be computed by such Takagi-Sugeno systems.
- We can, however, get a similar result:
 - if we use hierarchical Takagi-Sugeno systems,
 - in which the result of one such system serves as an input to other systems.

22. Acknowledgments

This work was supported in part:

- by the US National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
 - HRD-1834620 and HRD-2034030 (CAHSI Includes),
 - EAR-2225395 (Center for Collective Impact in Earthquake Science C-CIES),
- by the AT&T Fellowship in Information Technology, and
- by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Focus Program SPP 100+ 2388, Grant Nr. 501624329,