Random Interval Arithmetic is Closer to Common Sense: An Observation

René Alt and Jean-Luc Lamotte Laboratoire d'Informatique de Paris 6 Université Pierre et Marie Curie 4 Place Jussieu, 75252 cedex 05, Paris, France rene.alt@upmc.fr, Jean-Luc.Lamotte@lip6.fr

Vladik Kreinovich
Department of Computer Science
University of Texas, El Paso, TX 79968
email vladik@cs.utep.edu

1. Commonsense Arithmetic

- We have a bridge whose weight we know with an accuracy of 1 ton.
- On this bridge, we place a car whose weight we know with an accuracy of 5 kg.
- The accuracy of the overall weight is still 1 ton.
- This is what an engineer or a physicist would say.
- Related joke:
 - in 2000, a dinosaur was 14,000,000 years old;
 - so, in 2005, it must be 14,000,005 years old.
- What is desired: if $\Delta_a \gg \Delta_b$, and
 - we add "uncertainty approximately Δ_b " to "uncertainty approximately Δ_a ",
 - we should get "uncertainty approximately Δ_a ".

2. Traditional Interval Arithmetic Does not Have the Desired Property

- A natural way of dealing with approximately known values is interval arithmetic.
- The value \widetilde{a} with an accuracy Δ_a is interpreted as an interval $[\widetilde{a} \Delta_a, \widetilde{a} + \Delta_a]$.
- Specifics:
 - we know \tilde{a} with uncertainty Δ_a ;
 - we know \widetilde{b} with uncertainty Δ_b ;
 - then, $\mathbf{a} = [\widetilde{a} \Delta_a, \widetilde{a} + \Delta_a], \mathbf{b} = [\widetilde{b} \Delta_b, \widetilde{b} + \Delta_b], \text{ and}$
 - so, the set of possible values of c = a + b is an interval

$$\mathbf{c} = \mathbf{a} + \mathbf{b} = [(\widetilde{a} + \widetilde{b}) - (\Delta_a + \Delta_b), (\widetilde{a} + \widetilde{b}) + (\Delta_a + \Delta_b)].$$

Page 3 of 14

Go Back

Full Screen

Close

Quit

3. Traditional Interval Arithmetic Does not Have the Desired Property

- Situation:
 - we know \widetilde{a} with uncertainty Δ_a ;
 - we know \widetilde{b} with uncertainty Δ_b ;
 - we conclude that

$$c \in [(\widetilde{a} + \widetilde{b}) - (\Delta_a + \Delta_b), (\widetilde{a} + \widetilde{b}) + (\Delta_a + \Delta_b)].$$

• Interpretation: we thus interpret this interval as

"
$$\widetilde{a} + \widetilde{b}$$
 with uncertainty $\Delta_a + \Delta_b$ ".

- Conclusion: if we know a with uncertainty 1 ton, and we know b with uncertainty 5 kg, then the resulting uncertainty in a + b is 1.005 ton.
- *Problem:* how can we modify interval arithmetic?

4. Interval Arithmetic: Origins

- Objective: analyze how:
 - the uncertainty in input data, and
 - the round-off imprecision of computer operations

affect the results of the computations.

- Traditional approach: statistical techniques.
- Problem:
 - we must know the exact probability distributions of the input and roundoff errors;
 - in practice, we don't know these distributions.
- What we do know: upper bounds on the errors i.e., intervals that contain them.
- e.g.: space navigation under uncertainty (NASA, 1950s).
- Interval arithmetic was developed.

5. Interval Arithmetic: Limitations

- *Problem:* producing the exact bounds on the inaccuracy of the output is often difficult (NP-hard).
- Discussion: the origin of interval techniques is in NASA-related problems that required high reliability.
- Conclusion: the emphasis in interval computations has always been on getting the validated results.
- Interval techniques produce estimates that are guaranteed to contain (enclose) the actual error.
- Limitation: it is often desirable,
 - in addition to guaranteed "overestimates",
 - to produce a reasonable estimate of the size of the actual error,
 - an estimate that may be only valid with a certain probability.



6. Interval Arithmetic: Main Idea

- Main idea: we follow computations step by step.
- Specifics: for each intermediate computation step $z := x \odot y$,
 - once we have already computed the intervals $\mathbf{x} = [\underline{x}, \overline{x}]$ and $\mathbf{y} = [\underline{y}, \overline{y}]$ of possible values of x and y,
 - we compute the interval for z.
- Traditional interval arithmetic: apply interval arithmetic operation to \mathbf{x} and \mathbf{y} corresponding to the worst case.
- Example: for addition,

$$\mathbf{z} = [\underline{x} + y, \overline{x} + \overline{y}].$$

7. Random Interval Arithmetic

- New idea (Vignes et al.) motivation:
 - depending on the relative monotonicity of the x and y relative to inputs,
 - the intervals ${\bf z}$ can change from the worst-case situation to the best-case situation.
- Best case arithmetic: (a.k.a. dual or inner): e.g., for addition,

$$\mathbf{z} = [\min(\underline{x} + \overline{y}, \overline{x} + y), \max(\underline{x} + \overline{y}, \overline{x} + y)].$$

- Reasonable assumption:
 - monotonicity in the same direction and
 - monotonicity in different directions

are equally frequent.

• Result: on each step, we pick traditional or inner arithmetic with equal probability.

8. Random Interval Arithmetic Has the Desired Property

- Example: addition $\mathbf{c} = \mathbf{a} + \mathbf{b}$.
- Traditional arithmetic: the half-width is:

$$\Delta_c^t = \Delta_a + \Delta_b.$$

- Dual arithmetic: $\Delta_c^d = \max(\Delta_a, \Delta_b) \min(\Delta_a, \Delta_b)$.
- Random interval arithmetic: uses each operation with probability 50%.
- So, the average half-width of ${f c}$ is $\Delta_c^r = \frac{\Delta_c^t + \Delta_c^d}{2}.$
- Fact: $\Delta_c^t = \Delta_a + \Delta_b = \max(\Delta_a, \Delta_b) + \min(\Delta_a, \Delta_b)$.
- Conclusion: $\Delta_c^r = \max(\Delta_a, \Delta_b)$.
- Good news: this is exactly the intuitive property that we have been trying to formalize.

Page 9 of 14

Go Back

Full Screen

Close

Title Page

9. What If We Add n Values?

- Problem:
 - we know each quantity a_i with an accuracy Δ_i ;
 - what is the (expected value of) the accuracy in $a = a_1 + \ldots + a_n$?
- First, we add $a_1 + a_2$; the resulting accuracy is $\max(\Delta_1, \Delta_2)$.
- To estimate the uncertainty of the next intermediate result $(a_1 + a_2) + a_3$, we take, as an estimate of the uncertainty in $a_1 + a_2$, the value $\max(\Delta_1, \Delta_2)$.
- Then, the average uncertainty in $(a_1 + a_2) + a_3$ will be equal to

$$\max(\max(\Delta_1, \Delta_2), \Delta_3) = \max(\Delta_1, \Delta_2, \Delta_3).$$

• Similarly, we conclude that the average uncertainty in $a_1 + \ldots + a_n$ is equal to

$$\max(\Delta_1,\ldots,\Delta_n).$$

10. Computing $f(a_1, a_2)$

• When $\Delta a_i \stackrel{\text{def}}{=} a_i - \tilde{a}_i \ll a_i$, we can safely linearize the expression for $f(a_1, a_2)$:

$$f(a_1, a_2) = f(\widetilde{a}_1 + \Delta a_1, \widetilde{a}_2 + \Delta a_2) =$$

$$f(\widetilde{a}_1, \widetilde{a}_2) + \frac{\partial f}{\partial a_1} \cdot \Delta a_1 + \frac{\partial f}{\partial a_2} \cdot \Delta a_2.$$

• So, when $\Delta a_i \in [\Delta_i, \Delta_i]$, the worst-case half-width in $a = f(a_1, a_2)$ is equal to

$$\Delta^{t} = \left| \frac{\partial f}{\partial a_{1}} \right| \cdot \Delta_{1} + \left| \frac{\partial f}{\partial a_{2}} \right| \cdot \Delta_{2}.$$

• The result of applying dual interval arithmetic is

$$\Delta^d = \left| \left| \frac{\partial f}{\partial a_1} \right| \cdot \Delta_1 - \left| \frac{\partial f}{\partial a_2} \right| \cdot \Delta_2 \right|.$$

• Thus, the average half-width – corresponding to random interval arithmetic – is equal to

$$\Delta^r = \max\left(\left|\frac{\partial f}{\partial a_1}\right| \cdot \Delta_1, \left|\frac{\partial f}{\partial a_2}\right| \cdot \Delta_2\right).$$

Title Page

Page 11 of 14

Go Back

Full Screen

Close

Quit

11. Computing $f(a_1,\ldots,a_n)$

• Similarly, for n > 2 variables, we conclude that

$$\Delta^r = \max\left(\left|\frac{\partial f}{\partial a_1}\right| \cdot \Delta_1, \dots, \left|\frac{\partial f}{\partial a_n}\right| \cdot \Delta_n\right).$$

- In interval computations, we estimate the range of a function over a box $[\underline{a}_1, \overline{a}_1] \times \ldots \times [\underline{a}_n, \overline{a}_n]$.
- If a box is not too narrow, the estimates are too wide.
- To improve the estimates, we:
 - bisect the box along one of the directions and
 - repeat the estimation for each of the two half-boxes.
- The optimal direction in a direction a_i in which the product $\left| \frac{\partial f}{\partial a_i} \right| \cdot \Delta_i$ is the largest possible.
- The above value Δ^r is exactly the value of this maximum.

Page 12 of 14

Go Back

Full Screen

Quit

Title Page

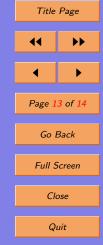
12. Relation with Fuzzy Logic

• Our formula:

$$\Delta_c = \max(\Delta_1, \Delta_b).$$

- Fuzzy logic objective:
 - we know:
 - * the degree of belief a = d(A) in a statement A and
 - * the degree of belief b = d(B) in a statement B,
 - we want to estimate the degree of belief c = d(C) in $C \stackrel{\text{def}}{=} A \vee B$.
- \bullet In the most widely used (and most practically successful version) of fuzzy logic,

$$c = \max(a, b)$$
.



13. Acknowledgments

This work was supported in part:

- by NASA under cooperative agreement NCC5-209,
- by the NSF grants EAR-0112968, EAR-0225670, and EIA-0321328, and
- \bullet by the NIH grant 3T34GM008048-20S1.

