Using Known Relation Between Quantities to Make Measurements More Accurate and More Reliable

Niklas R. Winnewisser1, Felix Mett1, Michael Beer1, Olga Kosheleva2, and Vladik Kreinovich2

1Leibniz University Hannover, Hannover, Germany
{winnewisser,beer}@irz.uni-hannover.de
2University of Texas at El Paso, El Paso, Texas 79968, USA
{olgak,vladik}@utep.edu
1. One of the main objectives of science and engineering

- One of the main objectives of science and engineering is:
 - to predict the future state of the world, and
 - to make sure that this future state is as beneficial for us as possible.

- The state of the world at any given moment of time can be characterized by the corresponding values of physical quantities.

- Thus, what we need is to predict future values of these quantities.

- For example, predicting weather means predicting the future values of temperature, humidity, wind speed and direction, etc.
2. Measurements and resulting data processing are very important

- To make the desired predictions, we need to know the relation between:
 - each future value y of the quantities of interest and
 - current values x_1, \ldots, x_n of related quantities.
- This relation is often described in terms of differential (and other) equations.
- By applying an appropriate method to solve this equation, we get an algorithm $y = f(x_1, \ldots, x_n)$ for estimating y from x_i.
- So, to come up with the desired estimate \tilde{y} for y, we:
 - measure the current values of the corresponding quantities $x_1 \ldots, x_n$, and then
 - we use the measurement results $\tilde{x}_1, \ldots, \tilde{x}_n$ to compute the estimate $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$ for each desired future value y.
3. One of the main metrological questions: how accurate is the resulting estimate?

- Measurement results \tilde{x}_i are, in general, different from the actual (unknown) values x_i.

- There is a non-zero difference $\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i$ known as measurement error.

- Because of these differences:
 - the estimate \tilde{y} is, in general, different from
 - the actual value $y = f(x_1, \ldots, x_n)$ – even when the function $f(x_1, \ldots, x_n)$ describes the relation between x_i and y exactly.

- The measurement uncertainty in x_i propagates through the algorithm f.
4. One of the main metrological questions: how accurate is the resulting estimate (cont-d)

- A natural question is: how accurate is the estimate \tilde{y}, i.e., what we can say about the difference $\Delta y \overset{\text{def}}{=} \tilde{y} - y$.

- This is one of the main metrological questions, and in metrology, there are many efficient algorithms for propagating uncertainty.
5. Traditional metrology is very important

- In general, the more accurately we measure, the more accurate our predictions.
- In this process, traditional metrology is very valuable; it teaches us:
 - how to gauge the accuracy of the measuring instruments and even
 - how to calibrate the instrument so as to further increase its accuracy.
6. Need to take into account relation between quantities

- However, traditional metrology mostly concentrates on individual measurements.
- In practice, often:
 - in addition to the relation between future and present values,
 - there are also relations between the current values of different quantities,
 - and this relation is not always captured by the correlations used in traditional metrological analysis.
- For example, there is usually an known upper bound on the difference between the values of the same quantity:
 - at close moments of time or
 - at nearby locations.
- It is known that such relations can lead to more accurate measurement results.
7. Need to account for relation between quantities (cont-d)

- For example, suppose that we know that the values of the mechanical stress at two nearby locations are in intervals

\[[0.80, 1.00] \text{ and } [0.90, 1.10]. \]

- Suppose that we know that the difference between the actual values cannot exceed 0.01.

- This means that the first quantity cannot be smaller than 0.90 − 0.01, so we get a narrower interval \([0.89, 1.00]\).

- Similarly, we get a narrower interval \([0.90, 1.01]\) for the second quantity.

- In general, such relations take the form of inequalities or inequalities.

- It is well known that any inequality or equality constraint can be described by inequalities of the type \(g_j(x_1, \ldots, x_n) \leq 0\).
8. Need to account for relation between quantities (cont-d)

- A general inequality constraint \(a(x_1, \ldots, x_n) \leq b(x_1, \ldots, x_n) \) is equivalent to \(a(x_1, \ldots, x_n) - b(x_1, \ldots, x_n) \leq 0 \).

- A general equality constraint \(a(x_1, \ldots, x_n) = b(x_1, \ldots, x_n) \) is equivalent to two inequality constraints:
 \[
 a(x_1, \ldots, x_n) - b(x_1, \ldots, x_n) \leq 0 \text{ and } b(x_1, \ldots, x_n) - a(x_1, \ldots, x_n) \leq 0.
 \]

- For example, the above relation of the type \(|x_i - x_j| \leq \delta \) means that we have two inequalities: \(x_i - x_j \leq \delta \) and \(x_i - x_j \geq -\delta \).

- They are equivalent to
 \[
 x_i - x_j - \delta \leq 0 \text{ and } -\delta - (x_i - x_j) \leq 0.
 \]

- Here, \(g_1(x_1, \ldots, x_n) = x_i - x_j - \delta \) and \(g_2(x_1, \ldots, x_n) = -\delta - (x_i - x_j) \).
9. Case of indirect relations

- So far, we have considered relations that directly relate the measured quantities.
- However, relations can also involve not-directly-measurable parameters of a model that describes the corresponding phenomenon.
- For example, we know that:
 - for a cantilever beam with a triangular line load linearly decreasing from q_0 at distance 0 to 0 at distance $z = \ell$,
 - the bending x_i at location z_i is determined by the following formula:
 $$x_i = c_1 \cdot \left(-\frac{1}{120\ell}z_i^5 + \frac{1}{24}z_i^4 + \frac{1}{12}z_i^3 \cdot \ell + \frac{1}{12}z_i^2 \cdot \ell^2 \right).$$
 - Here $c_1 \overset{\text{def}}{=} \frac{q_0}{E \cdot I}$.
 - We measure the values x_i, but we do not directly the value c_1.
10. Case of indirect relations (cont-d)

- Since different measurement results are related to the same coefficient c_1, they are indirectly related to each other.
- Namely, we know the exact ratios x_i/x_j of the bendings corresponding to different locations on the beam.
- In general, we can have models with several not-directly-measurable parameters c_1, \ldots, c_k.
- So a general constraint can take a form $g_j(x_1, \ldots, x_n, c_1, \ldots, c_k) \leq 0$.
- Based on the measurements, we can find estimates \tilde{c}_i for these parameters.
- These estimates are based on measurements, and measurements are not absolutely accurate.
- So, these estimates, in general, differ from the actual (unknown) values of these parameters, i.e., we have a non-zero estimation errors $\Delta c_i \overset{\text{def}}{=} \tilde{c}_i - c_i$.
11. What we do in this talk

- In this talk, we analyze the general problem of using known relations between quantities.
- The purpose is to make measurements more accurate and more reliable.
- Our main focus is on the – rather typical practical case – when we only know the upper bound on the measurement error.
- Measurement errors are usually relatively small.
- So terms quadratic (or higher order) with respect to measurement errors can be safely ignored.
- We show that:
 - under this – usual – linearization assumption,
 - the corresponding problems can be effectively solved by known linear programming algorithms.
12. What we do in this talk (cont-d)

- We also consider the case when:

 - we know the probability distributions of different measurement errors,

 - we know the reliability of each measuring instrument, and

 - we know our degree of confidence in each relation between the quantities.

- In this case, the problem is computationally more difficult, but still solvable.
13. Usual approach to measurement uncertainty and its propagation: a brief reminder and why go beyond

- This talk focuses on situations in which there is a practical need to go beyond the usual approach to uncertainty propagation.
- To explain this need, we will first briefly remind the reader about the usual approach to measurement uncertainty and its propagation.
- This approach is described in the Guide to the Expression of Uncertainty in Measurement (GUM).
14. Usual approach to measurement uncertainty and its propagation (cont-d)

- To better explain why there are situations when we need to go beyond GUM:
 - we will not just reproduce the GUM formulas,
 - we will also remind the readers about the main assumptions behind these formulas.

- This will help us explain that there are situations:
 - when these assumptions are not satisfied and
 - where, moreover, the uncritical use of GUM formulas can lead to misleading results.
15. Main assumptions behind the usual GUM formulas

- The main GUM formulas – the ones that people mostly use – are based, in effect, on the following two assumptions:
 - The measurement errors are relatively small – and thus, we can linearize the corresponding expressions
 - We know the joint probability of all the measurement errors, i.e.:
 - we know the probability distributions of each measurement error (in particular, its mean and its standard deviation), and
 - we know the relation between these measurement errors.
- These assumptions are not always satisfied in practice.
- GUM also has recommendations on what to do in such cases. Let us recall these two assumptions.
16. Possibility of linearization

- Measurement errors are usually relatively small.
- So terms quadratic (or higher order) with respect to measurement errors are much smaller than the linear terms.
- For example:
 - even for a not very accurate measurement, for which the measurement error is about 10%,
 - the square of this error is 1%, which is much smaller than 10%.
- For more accurate measurements, the ratio of quadratic to linear terms is even smaller.
- So, we can:
 - safely ignore quadratic and higher order terms in the Taylor expansion of the corresponding dependencies, and
 - retain only linear terms.
17. Possibility of linearization (cont-d)

- Let us apply this idea to the error $\Delta y \overset{\text{def}}{=} \tilde{y} - y$ in the result of processing data caused by measurement errors.
- Here, $\Delta y = \tilde{y} - y = f(\tilde{x}_1, \ldots, \tilde{x}_n) - f(x_1, \ldots, x_n)$.
- By definition of the measurement error Δx_i, we get $x_i = \tilde{x}_i - \Delta x_i$.
- Substituting this expression into the above formula, we conclude that
 $$\Delta y = f(\tilde{x}_1, \ldots, \tilde{x}_n) - f(\tilde{x}_1 - \Delta x_1, \ldots, \tilde{x}_n - \Delta x_n).$$
- Expanding this expression in Taylor series in terms of Δx_i and keeping only linear terms in this expansion, we conclude that
 $$\Delta y = f_1 \cdot \Delta x_1 + \ldots + f_n \cdot \Delta x_n,$$
 where $f_i \overset{\text{def}}{=} \frac{\partial f}{\partial x_i} \bigg|_{x_1=\tilde{x}_1,\ldots,x_n=\tilde{x}_n}$.
18. How linearization helps to propagate uncertainty and what to do if measurement errors are not small: reminder

- we can find the probability distribution for Δy by using:
 - the above formula and
 - the second assumption – that we know the joint probability distribution of the measurement errors.

- First, since we know the distribution, we thus know the mean value $E[\Delta x_i]$ (known as bias) of each measurement error.

- Thus, we can subtract this bias from all measurement results.

- For example, if we know that the clock runs, on average, 3 minutes ahead, we can subtract 3 from the clock’s reading.

- This way, we get measurements whose bias is 0. In this case, due to the above formula, the bias of Δy is also 0.
If we are only interested in the standard deviation σ of Δy, then:

- we can use the covariance matrix $c_{ij} \overset{\text{def}}{=} E[\Delta x_i \cdot \Delta x_j]$ – which we know since we know the distribution
- to conclude that $\sigma^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} f_i \cdot f_j \cdot c_{ij}$.

In particular, in frequent situations when measurement errors Δx_i are independent, this formula takes a simplified form $\sigma^2 = \sum_{i=1}^{n} f_i^2 \cdot \sigma_i^2$.

Here σ_i is the standard deviation of Δx_i.

What if we are not satisfied with the standard deviation, and we want to know the full probability distribution for Δy?

For this purpose, we can use Monte-Carlo simulation techniques.

The same Monte-Carlo technique can be used if the measurement errors are not small, and thus, linearization is not possible.
20. Sometimes, we do not know the probability distributions of measurement errors

- One of the two main GUM assumptions is that we know the probability distribution of measurement errors.

- However, there are two types of situations in which we do not know these probabilities.

- The first is the most common type, when we are performing routine measurements – on the factory floor, in a building, etc.

- In principle, we can calibrate each sensor and get the probability distribution of its measurement error.

- However nowadays, most sensors are very cheap – unless we are looking for very accurate ones – while calibration is very expensive.

- As a result, most sensors used in industry and in practice are not calibrated very accurately.
21. Sometimes, we do not know the probability distributions of measurement errors (cont-d)

- For example, for a sensor that measures the body temperature, it is enough to know that it provides temperature with measurement error not exceeding 0.2°C.
- It makes no sense to come up with the exact probability distribution.
- Another is the case of state-of-the-art measurements, when the usual calibration techniques are not applicable.
- Indeed, the usual sensor calibration techniques assume that:
 - there is a measuring instrument – called *standard*,
 - which is much more accurate than the sensor that we are trying to calibrate.
- However, if we perform the measurements with the most accurate sensor available, then this sensor is already the most accurate.
- No sensor is more accurate than the one we have.
22. Sometimes, we do not know the probability distributions of measurement errors (cont-d)

- In this case, the best we can do is to get some theory-justified upper bound on the measurement error.

- In both cases, we only know the upper bound Δ on the absolute value $|\Delta x|$ of the measurement error $\Delta x \overset{\text{def}}{=} \bar{x} - x$.

- The upper bound, by the way, is the absolute minimum information that we need to know;
 - if we do not even know the upper bound on the measurement error,
 - this means that the actual value x can be as different from the measurement result \bar{x} as possible;
 - this is not a measurement, this is a wild guess.
23. Sometimes, we do not know the probability distributions of measurement errors (cont-d)

- When all we know is the upper bound Δ, then:
 - once we perform the measurement and get the measurement result \tilde{x},
 - the only information that we now have about the actual value x of the measured quantity is that $x \in [\tilde{x} - \Delta, \tilde{x} + \Delta]$.

- Because of this, this type of uncertainty is known as interval uncertainty.
24. What is usually recommended in such cases

- In practice:
 - when all we know is the upper bound on the measurement error,
 - people often assume that the measurement error is uniformly distributed on the corresponding interval \([-\Delta, \Delta]\).

- This is what is usually recommended when we use the GUM formulas.

- This assumption makes sense:
 - if we have no reason to assume that some values from this interval are more probable than others,
 - then it is reasonable to assume that all the values are equally probable, i.e., that we have a uniform distribution.

- This argument goes back to Laplace and is known as Laplace Indeterminacy Principle.
25. What is usually recommended in such cases (cont-d)

- In more general cases, this principle leads to the Maximum Entropy approach, when:
 - out of all possible probability distributions with probability density $\rho(x)$,
 - we select the one for which the entropy $S \overset{\text{def}}{=} - \int \rho(x) \cdot \log(\rho(x)) \, dx$ is the largest.

- In particular, this implies that:
 - if we have no information about the correlations between Δx_i,
 - it is reasonable to assume that these measurement errors are independent.
Why we need to go beyond this recommendation

- One of the main purposes of metrology is to produce guaranteed information about the measured values of different physical quantities.

- From this viewpoint, as we will show on a simple example, selecting a uniform distribution can lead to misleading conclusions.

- Let us consider the simplest possible relation between the desired quantity y and the easier-to-measure quantities x_1, \ldots, x_n:

$$y = x_1 + \ldots + x_n.$$

- Let us also assume, for simplicity, that the measured values $\tilde{x}_1, \ldots, \tilde{x}_n$ of all these quantities are 0s.

- Let us also assume that for each of these measurements:

 - the only information that we have about the possible values of the measurement error $\Delta x_i = \tilde{x}_i - x_i$

 - is that this value is bounded by a given positive number Δ.
27. Why we need to go beyond this recommendation (cont-d)

- In this case, all we know about each actual value x_i is that this value is located in the interval $[-\Delta, \Delta]$.
- In this situation, what can we say about possible values of y?
- Since each of the values x_i is bounded from above by Δ, the sum of n such terms cannot exceed $n \cdot \Delta$.
- On the other hand, it is possible that each value x_i is equal to Δ, in which case their sum is exactly $n \cdot \Delta$.
- Similarly, since each of the values x_i is bounded from below by $-\Delta$, the sum of n such terms cannot be smaller than $-n \cdot \Delta$.
- On the other hand, it is possible that each value x_i is equal to $-\Delta$, in which case their sum is exactly $-n \cdot \Delta$.
- So, the range of possible values of y is the interval $[-n \cdot \Delta, n \cdot \Delta]$.
- Let us describe what the GUM formulas imply in this case.
28. Why we need to go beyond this recommendation (cont-d)

- Based on the above recommendation, we assume that:
 - measurement errors are independent, and
 - each measurement error is uniformly distributed on $[-\Delta, \Delta]$.
- Each of these distributions has mean 0 and variance $\sigma_i^2 = \Delta^2 / 3$.
- Here, $f_1 = \ldots = f_n = 1$, so the GUM formula leads to $\sigma^2 = n \cdot \Delta^2 / 3$.
- For large n, according to the Central Limit Theorem, the distribution of y is close to Gaussian.
- For Gaussian distribution, with high confidence, we usually conclude that the actual value is in the interval $[m - k_0 \cdot \sigma, m + k_0 \cdot \sigma]$.
- For $k_0 = 3$, this is true with confidence 99.9%.
- For $k_0 = 6$, this is true with confidence $1 - 10^{-8}$.
- So, with high confidence, we conclude that the actual value y is located in the interval $\left[-k_0 \cdot \sqrt{n} \cdot \frac{\Delta}{\sqrt{3}}, k_0 \cdot \sqrt{n} \cdot \frac{\Delta}{\sqrt{3}}\right]$.
29. Why we need to go beyond this recommendation (cont-d)

- So, the upper bound resulting from the uniform-distribution assumption is proportional to \sqrt{n}, while the actual bound grows as n.

- For large n, \sqrt{n} is much smaller than n. So:
 - even in this very simple example,
 - the uniform-distribution assumption drastically underestimates the inaccuracy of the data processing result.
30. So what can we do in this case: interval computations

- Suppose that all we know about each value x_i is that it is in the interval $[\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$.

- Then all we can say about $y = f(x_1, \ldots, x_n)$ is that y belongs to the range

$$[\underline{y}, \overline{y}] \overset{\text{def}}{=} \{ f(x_1, \ldots, x_n) : x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i] \text{ for all } i \}.$$

- Computing the endpoints \underline{y} and \overline{y} of this range is one of the main problems of interval computations.

- In particular, in the linearized case, we have $[\underline{y}, \overline{y}] = [\tilde{y} - \Delta, \tilde{y} + \Delta]$, where

$$\Delta = \sum_{i=1}^{n} |f_i| \cdot \Delta_i.$$
31. Remaining problem

- Usual interval computation techniques do not cover the situation when:
 - in addition to intervals $[\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$,
 - we also know some relation between the quantities x_i: e.g., that there is an upper bound δ on the difference between two values: $|x_i - x_j| \leq \delta$.

- As we have shown in Section 1, in this case:
 - not only we get more accurate estimates for y,
 - we also get more accurate estimates for each of the measured quantities x_i.

- Let us analyze how this can be done in the general case.
32. How to use known relations between quantities to make measurements more accurate

- We measure n quantities x_1, \ldots, x_n and get n measurement results
 $$\tilde{x}_1, \ldots, \tilde{x}_n.$$

- For each measurement i, we know the upper bound Δ_i on the absolute values of the measurement error $\Delta x_i = \tilde{x}_i - x_i$.

- In this case, we can conclude that each actual value x_i is located in the interval $[\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$.

- Suppose that we also know the relations between these quantities
 $$g_1(x_1, \ldots, x_n, c_1, \ldots, c_k) \leq 0,$$
 $$\ldots,$$
 $$g_r(x_1, \ldots, x_n, c_1, \ldots, c_k) \leq 0.$$
33. Possibility of linearization

- We have mentioned the possibility of linearizing $f(x_1, \ldots, x_n)$.
- Similarly, we can represent each constraint $g_j(x_1, \ldots, x_n, c_1, \ldots, c_k) \leq 0$ as $g_j(\tilde{x}_1 - \Delta x_1, \ldots, \tilde{x}_n - \Delta x_n, \tilde{c}_1 - \Delta c_1, \ldots, \tilde{c}_k - \Delta c_k) \leq 0$.
- Expanding this expression in Taylor series in terms of Δx_i and keeping only linear terms in this expansion, we conclude that

$$\tilde{g}_j + g_{j1} \cdot \Delta x_1 + \ldots + g_{jn} \cdot \Delta x_n + m_{j1} \cdot \Delta c_1 + \ldots + m_{jk} \cdot \Delta c_k \leq 0.$$

- Here we denoted $\tilde{g}_j \overset{\text{def}}{=} g_j(\tilde{x}_1, \ldots, \tilde{x}_n, \tilde{c}_1, \ldots, \tilde{c}_k)$,

$$g_{ji} \overset{\text{def}}{=} -\frac{\partial g_j}{\partial x_i}|_{x_1=\tilde{x}_1,\ldots,x_n=\tilde{x}_n,c_1=\tilde{c}_1,\ldots,c_k=\tilde{c}_k}, \quad m_{ji} \overset{\text{def}}{=} -\frac{\partial g_j}{\partial c_i}|_{x_1=\tilde{x}_1,\ldots,x_n=\tilde{x}_n,c_1=\tilde{c}_1,\ldots,c_k=\tilde{c}_k}.$$

- Let us show how to use this info to get more accurate estimates for the quantities x_1, \ldots, x_n.

34. How we can solve this problem

- For each i, the smallest possible value of x_i can be obtained by solving the following constrained optimization problem:

- Minimize $\tilde{x}_i - \Delta x_i$ under the following constraints:

\[
-\Delta_1 \leq \Delta x_1 \leq \Delta_1, \ldots, -\Delta_n \leq \Delta x_n \leq \Delta_n,
\]
\[
\tilde{g}_1 + g_{11} \cdot \Delta x_1 + \ldots + g_{1n} \cdot \Delta x_n +
\]
\[
m_{11} \cdot \Delta c_1 + \ldots + m_{1k} \cdot \Delta c_k \leq 0,
\]
\[
\ldots,
\]
\[
\tilde{g}_1 + g_{r1} \cdot \Delta x_1 + \ldots + g_{jn} \cdot \Delta x_n +
\]
\[
m_{r1} \cdot \Delta c_1 + \ldots + m_{rk} \cdot \Delta c_k \leq 0.
\]

- To find the largest possible value of x_i, we need to maximize $\tilde{x}_i - \Delta x_i$ under the same constraints.

- In both problems, we optimize the value of a linear expression under linear constraints.
35. How we can solve this problem (cont-d)

- Such problems are known as problems of *linear programming*.
- Several efficient algorithms are known for solving these problems.
- By using linear programming techniques, we can find:
 - the solution x_i to the minimization problem and
 - the solution \bar{x}_i to the maximization problem.
- We can now conclude that the range of possible values of x_i is equal to $[x_i, \bar{x}_i]$.
- A simple example mentioned earlier shows that this can indeed lead to a drastic improvement of accuracy.
How to use known relations between quantities to make measurements more accurate: case of data processing

- We are interested in the value of a difficult-to-measure quantity y.
- This quantity is related to several easier-to-measure quantities x_1, \ldots, x_n by a known relation $y = f(x_1, \ldots, x_n)$.
- We measure n quantities x_1, \ldots, x_n and get n measurement results $	ilde{x}_1, \ldots, \tilde{x}_n$.
- We plug in these measurement results into the algorithm f, and we get the estimate $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$.
- What can we conclude about the possible values of the estimation error $\Delta y = \tilde{y} - y$?
- We assume that for each measurement i, we know the upper bound Δ_i on the absolute values of the measurement error $\Delta x_i = \tilde{x}_i - x_i$.
- In this case, the estimation error is determined by the above formula.
37. Case of data processing (cont-d)

• In the absence of any other information, all we can conclude about ∆y is that |∆y| ≤ ∆, where

\[\Delta \overset{\text{def}}{=} |f_1| \cdot \Delta_1 + \ldots + |f_n| \leq \Delta_n. \]

• Suppose now that we also know the relations between these quantities

\[g_1(x_1, \ldots, x_n, c_1, \ldots, c_k) \leq 0, \]

\[\ldots, \]

\[g_r(x_1, \ldots, x_n, c_1, \ldots, c_k) \leq 0. \]

• As we have mentioned earlier:
 – since the measurement errors are usually small,
 – we can describe these relations in the linearized form.

• How can we use this info to get more accurate estimates for ∆y?
38. How we can solve this problem

- The smallest possible value of Δy can be obtained by solving the following constrained optimization problem:

$$\text{Minimize } \tilde{y} - (f_1 \cdot \Delta x_1 + \ldots + f_n \cdot \Delta x_n) \text{ under the above constraints.}$$

- To find the largest possible value of Δy, we need to maximize the same expression under the same constraints.

- Both problems are particular cases of linear programming.

- So, we can apply efficient linear programming algorithms to solve these problems.

- We can use linear programming techniques and find:
 - the solution \underline{y} to the minimization problem and
 - the solution \bar{y} to the maximization problem.

- We can then conclude that the range of possible values of y is equal to $[\underline{y}, \bar{y}]$.

-\hfill
39. How to use known relations between quantities to make measurements more reliable

- A sensor can malfunction.
- As a result, the value generated by this sensor will, in general, become very different from the actual value of the measured quantity.
- This leads to two natural questions.
- How can we detect that one of the sensors malfunctioned? If we can detect this, this will make the measurement results more reliable.
- Once we detect that one of the sensors malfunctioned, how can we determine which sensor malfunctioned?
40. How to detect that one of the sensors malfunctioned: analysis of the problem

- Suppose that, as in our first numerical example, that we measure two related quantities \(x_1 \) and \(x_2 \) by two sensors.
- For each of them, the upper bound on the absolute value of the measurement error is \(\Delta_1 = \Delta_2 = 0.1 \).
- Suppose that we know that the actual values \(x_1 \) and \(x_2 \) of two quantities cannot differ by more than 0.01: \(|x_1 - x_2| \leq 0.01 \).
- Suppose that, as in our example, the first sensor produced the value \(\tilde{x}_1 = 0.9 \).
- However, the second sensor malfunctioned and generated the value \(\tilde{x}_2 = 2.0 \) – which is far away from the actual (unknown) value \(x_2 \).
- In this case, we cannot find two values \(x_1 \) and \(x_2 \) for which

\[
|x_1 - 0.9| \leq 0.1, \quad \text{vert}x_2 - 2.0| \leq 0.1, \quad \text{and} \quad |x_1 - x_2| \leq 0.01.
\]
41. How to detect that one of the sensors malfunctioned: analysis of the problem (cont-d)

- Indeed, in this case, $x_1 \leq 1.0$, $x_2 \geq 1.9$ and thus, the difference $x_2 - x_1$ is larger than or equal to $1.9 - 1.0 = 0.9$ – much larger than 0.01.
- This is a typical situation:
 - if one of the sensors malfunctions,
 - it is highly probable that the system of constraints can no longer be satisfied.
- So, we arrive at the following suggestion.
42. How to detect that one of the sensors malfunctioned: idea

- If the system of inequalities is inconsistent, this means that one of the sensors malfunctioned.
- Checking consistency of a system of linear inequalities can be done by the same efficient linear programming algorithms.
43. How can we determine which sensor malfunctioned

- If the system of inequalities (8) is no longer consistent, what we can do is try:
 - for each i from 1 to n,
 - to delete all inequalities involving Δx_i from the system and check whether the resulting reduced system is still consistent.

- When we delete a well-functioning sensor:
 - the system will still contain the inequalities coming from the malfunctioning sensor and
 - thus, the system will most probably still be inconsistent.

- However, when we delete the malfunctioning sensor, the remaining system will become consistent.

- So, we can determine the malfunctioning sensor as the one whose deletion makes the system consistent.
44. Comments

- On the qualitative level, this idea is far from being new: it is used a lot.

- For example:
 - if a thermometer show a temperature of 5° C in an office while in a neighboring office a thermometer shows 20° C,
 - this clearly means that one of these sensor malfunctioned.

- What if a car flashes a red light indicating that something may be wrong?

- Mechanics always compare with other measurement results to make sure that it is a real problem, and not a sensor malfunction.

- A similar idea can be used to detect whether the physical systems itself – whose quantities we are measuring – is malfunctioning.

- Usually, there are some thresholds for the corresponding quantities.
45. Comments (cont-d)

- For example, for a building, stresses should not exceed a certain level.
- For a chemical plant, temperature in the reactor must lie within given bounds, etc.
- If some values from the interval \([y, \bar{y}]\) that we obtain get outside these bounds, this is an indication that something needs to be done.
46. Application to digital twins

- How can we understand how different effects and different controls will affect a system: be it an airplane, a building, a plant?
- A good idea is to design an accurate simulating program.
- Such program are known as digital twins.
- From the metrological viewpoint, there are two major challenges related to digital twins.
- The first challenge is related to the fact that we determine the parameters c_1, \ldots, c_k of the corresponding model based on measurements.
- The value c_i are determined based on measurements and are, thus, only known with some uncertainty.
- The estimated values \tilde{c}_i used in the design of the digital twin are, in general, somewhat different from the ideal best-fit values c_i.
- There is an estimation error $\Delta c_i = \tilde{c}_i - c_i$.
47. Application to digital twins (cont-d)

- As a result, the values predicted by a digital twin are, in general, somewhat different from what we actually observe.

- However, the current digital twins do not provide us with any bounds on this difference.

- It is therefore desirable to make digital twins generate not the numerical values – as now – but rather intervals of possible values.

- The second major challenge is that the current digital twins do not learn.

- As we compare the predictions of the digital twin with how the actual system behaves, we get additional information.

- This information can potentially help us make the model more accurate.

- However, in the current digital twin technology, there is no easy way to do it.
48. Application to digital twins (cont-d)

- How can we make a digital twin that learns?
- There exist effective machine learning tools like deep learning.
- However, these tools require a lot of data to train, and we rarely have that much data about the actual physical system.
- So, what can we do?
How to make digital twins learn: main idea

- The formulas describing the digital twin can be formulated as constraints.

- For example, if the digital twin predict the value x_i as $t_i(c_1, \ldots, c_k)$, for some algorithm t_i, this can be described as an equality

$$x_i = t_i(c_1, \ldots, c_k).$$

- Now, each measurement of the actual values of each physical quantity results in this equality constraint plus the usual constraint

$$|x_i - \bar{x}_i| \leq \Delta_i.$$
So:

– to get a better constraint on the values of each of the parameters c_i,
– we can maximize and minimize each value $c_i = \tilde{c}_i - \Delta c_i$ under the corresponding constraints.

Then:

– as we add more and more measurement results,
– the corresponding bounds $[c_i, \bar{c}_i]$ will lead to more and more accurate description of the best-fit parameters c_i.
51. This will also help digital twins return intervals, and not just numbers without any estimates of their accuracy

- This way, digital twins will not only predict approximate estimates.
- We can also use the above-described ideas to generate:
 - the bounds on possible values of \(t_i(c_1, \ldots, c_k) \)
 - when each \(c_i \) is in the corresponding interval.
52. How can we make this idea more practical

- In the above idea, each additional measurement adds new inequalities to the system of inequalities.
- As the number of inequalities grows, the computation time needed to solve this system of inequalities also grows.
- At some point, it may exceed the computational ability of the computational system.
- To make computations realistic, we can use the following natural idea:
 - First, we perform a certain number M of measurements.
 - Then, we use the above scheme to find the better bounds $c_i \leq c_i = \tilde{c}_i - \Delta c_i \leq \bar{c}_i$ on the parameters c_i.
 - Then, we again start measuring and comparing the measurement results with the predictions of the digital twin.
53. How can we make this idea more practical (cont-d)

- Once we have made \(M \) new measurements, we form a system that takes into account:
 - not only these new \(M \) measurements,
 - but also \(k \) previously determined inequalities

\[
c_i \leq c_i = \tilde{c}_i - \Delta c_i \leq \bar{c}_i.
\]

- Solving this system of inequalities leads us to more accurate bounds \(c_i \) and \(\bar{c}_i \).

- Then, we again perform \(M \) new measurements, etc.

- In this case, the number of inequalities that we need to process remains limited.

- Alternatively, we can – if we have enough computational power:
 - repeat this procedure every time we get a new measurement,
 - but using only \(M \) latest measurement results.
54. What if we have probabilistic uncertainty?

- In the previous sections, we consider the case when:
 - we only know the bounds on the measurement errors, and
 - we do not have any information about the probabilities of different values within these bounds.

- In many practical situations, however, we know the corresponding probability distributions.

- In such situations, how can we use known relations between the measured quantities to make measurements more accurate?

- One possibility is to use Monte-Carlo simulations; namely:
 - many times, we simulate probability distributions for all \(n \) measurement errors \(\Delta x_i \), but
 - then we dismiss all simulated tuples \((\Delta x_1, \ldots, \Delta x_n)\) that do not satisfy the inequalities describing the known relations.
55. What if we have probabilistic uncertainty (cont-d)

- Based on remaining tuples, we can get the histograms of the corresponding values Δx_i and/or Δy.

- Thus, get a good understanding of the probability distributions that take into account the relations between the quantities x_i.

- What we propose is, in effect, a minor modification of the usual GUM-related practice:
 - instead of simply using the known joint probability distribution of the measurement errors,
 - we propose to use the related distribution on the tuples $x = (x_1, \ldots, x_n)$ of actual values.
What if we have probabilistic uncertainty (cont-d)

- This distribution takes into account:
 - not only the measurement errors,
 - but also the relation between the actual values of the quantities.
- In effect, this is similar to the GUM-recommended Bayesian approach.
- The difference is that we use the relation between the quantities instead of the prior distribution.
This work was supported in part by:

- Deutsche Forschungsgemeinschaft Focus Program SPP 100+ 2388, Grant Nr. 501624329;
- National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;
- AT&T Fellowship in Information Technology;
- program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and
- a grant from the Hungarian National Research, Development and Innovation Office (NRDI).