Why $1/(1 + d)$ Is an Effective Distance-Based Similarity Measure: Two Explanations

Julio Urenda1, Olga Kosheleva2, and Vladik Kreinovich3

1Department of Mathematical Sciences
1Department of Teacher Education
2Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, USA

jcurenda@utep.edu, olgak@utep.edu, vladik@utep.edu
1. Need for similarity measures

- Many of our decisions are based on the idea of similarity:
 - if some decision was effective in similar situations,
 - then it makes sense to apply a similar decision here.

- Suppose that we know, for each i from 1 to n, that a decision d_i was successful in situation s_i.

- It can be a control decision, a medical decision, a financial decision, etc.

- Then, to select a decision d in a new situation s, we should use the following natural rules:
 - if s is similar to s_1, then d should be similar to d_1;
 - if s is similar to s_2, then d should be similar to d_2;
 - ...
 - if s is similar to s_n, then d should be similar to d_n.
2. Need for similarity measures (cont-d)

- These rules use an imprecise ("fuzzy") natural-language word "similar".

- Such natural-language words are ubiquitous.

- To transform such rules into a precise decision making strategy, Lotfi Zadeh invented fuzzy methodology.

- In this methodology, each imprecise property can be described by assigning:
 - to each possible object,
 - the degree to which, according to the expert, this object satisfies this property.

- In our case, we can ask the expert:
 - for each pair of situations (or pair of decisions) \(a\) and \(b\)
 - to estimate to what extent the following statement is true: "\(a\) and \(b\) are similar".
3. Need for similarity measures (cont-d)

- In a computer, “true” is usually represented as 1, and “false” as 0.
- So it is natural to represent an intermediate degree of confidence by a number between 0 and 1.
- This way:
 - to estimate the degree of similarity \(s(a, b) \) between objects \(a \) and \(b \),
 - we ask an expert to mark his/her degree of similarity between the two objects on a scale of 0 to 1.
- The value \(s(a, b) = 1 \) means that the objects are perfectly similar, practically indistinguishable.
- The value \(s(a, b) = 0 \) means that the objects are completely dissimilar, i.e., that they have nothing in common.
- Values strictly between 0 and 1 describe the cases when there is some similarity, but there is some dissimilarity as well.
4. Need for similarity measures (cont-d)

- Sometimes, experts are not comfortable providing numerical estimates of their degree of similarity.
- They can only give us binary answers: similar or not similar.
- Then we can ask several \((n)\) experts this question.
- If \(m\) of them answer that the objects are similar, use the ratio \(\frac{m}{n}\) as the desired degree of similarity.
5. Need for metric-based similarity measures

- In many practical cases, we have a large number of possible objects and situations.
- In such cases, it is not feasible to ask the experts about each possible pair.
- What can we do?
- Often, we have a naturally defined metric $d(a, b)$ on the class S of some objects.
- In other words, we have a function $d : S \times S \rightarrow [0, \infty)$ that satisfies the usual properties:
 - $d(a, b) = 0$ if and only if $a = b$,
 - $d(a, b) = d(b, a)$ for all a and b, and
 - $d(a, c) \leq d(a, b) + d(b, c)$ for all a, b, and c.
- This metric describes to what extent the two objects are dissimilar.
6. Need for metric-based similarity measures (cont-d)

- Thus, a natural idea is to estimate the desired degree of similarity \(s(a, b) \) between the two objects based on this metric, as:
 \[s(a, b) = f(d(a, b)) \]
 for some function \(f(d) \).

- Which function \(f(d) \) should we choose?
7. Natural properties of the transformation \(f(d) \)

- The degree of similarity must satisfy the following natural properties.
- The degree of similarity \(s(a, b) \) should attain its largest value \(s(a, b) = 1 \) if the objects are identical (under given representation).
- So, if \(d(a, b) = 0 \); thus, we must have \(f(0) = 1 \).
- The larger the distance between the objects, the smaller the similarity between them.
- Thus, the function \(f(d) \) should be strictly decreasing: if \(d < d' \), then we should have \(f(d) > f(d') \).
- In the limit, when the objects are as far away from each other as possible, the resulting degree of similarity should be close to 0.
- In other words, as \(d \to \infty \), we should have \(f(d) \to 0 \).
- There are many functions \(f(d) \) that satisfy these three properties.
- Which one should we choose?
8. **Empirical fact: an efficient transformation**

- In many practical applications, the following function leads to reasonable similarity-based decisions

\[f(d) = \frac{1}{1 + d}. \]

- A natural question is: why this function works well?
- In this talk, we provide two explanations of this empirical success.
- The fact that two different explanations lead to the same formula increases our confidence in both explanations.
9. Towards the first explanation

- When the degree of similarity comes from a poll of \(n \) experts, we only get \(n + 1 \) possible degrees: 0, \(\frac{1}{n} \), \(\frac{2}{n} \), \ldots, \(\frac{n-1}{n} \), 1.

- When \(n \) is small, these values provide a rather crude description of the actual degree of similarity.

- Thus, a natural way to increase the accuracy of the estimate is to ask more experts.

- This is similar to statistics, where we can estimate the probability of an event by taking the ratio \(m/n \) between:
 - the general number of situations \(n \) and
 - the number of cases \(m \) in which this event was observed.

- In statistics, the larger the sample size \(n \), the more accurate this estimation of the probability.
10. Resulting problem

- To make our estimate more accurate, we ask the more knowledgeable experts.
- So, at first, we asked n top experts.
- Then, to increase the accuracy, we ask n' additional experts.
- These additional experts may be intimidated by the opinion of the top experts.
- This intimidation may be described in two ways.
- Additional experts may be unwilling to say anything: if top experts are disagreeing, who are we to voice our humble opinions?
- In this case, out of $n + n'$ experts, we still have the same number m of experts who answer that the objects a and b are similar.
- Thus, instead of the original degree of similarity $s = \frac{m}{n}$, we have a new degree $s' = \frac{m}{n + n'}$.
11. Resulting problem (cont-d)

- One can easily see that the new degree s' can be obtained from the original degree by a transformation

$$s' = c_1 \cdot s, \text{ where } c_1 \overset{\text{def}}{=} \frac{n}{n + n'}.$$

- Alternatively, additional experts can simply side with the majority.

- We are looking for cases when there is a similarity – in this case, we can use this similarity to make a decision.

- So let us consider the case when originally, the majority of experts believed that the objects are similar.

- In this case, now we have $m + n'$ experts who answer that the given objects a and b are similar.

- Thus, instead of the original degree of similarity $s = \frac{m}{n}$, we have a new degree $s' = \frac{m + n'}{n + n'}$.

12. Resulting problem (cont-d)

- One can easily see that the new degree s' can be obtained from the original degree by a transformation $s' = c_1 \cdot s + c_2$, where $c_2 \overset{\text{def}}{=} \frac{n'}{n + n'}$.

- In both cases, we have linear transformations between different scales, i.e., linear functions $s' = g(s)$.
13. This is similar to measurements in general

- This possibility of a linear transformation between different scales is similar to the fact that in measurements:
 - we can select a different measuring unit, and
 - for some quantities like time or temperature, we can select a different starting point.

- When we use a measuring unit which is \(c_1 \) times smaller, than all numerical values get multiplied by \(c_1 \): \(x \mapsto c_1 \cdot x \).

- For example, when we replace meters with centimeters, then 1.7 m becomes 170 cm.

- When we use a starting point which is \(c_2 \) units earlier than the original one, then this value \(c_2 \) is added to all numerical values: \(x \mapsto x + c_2 \).

- If we change both the measuring unit and the starting point, then we get a general linear transformation \(c \mapsto c_1 \cdot x + c_2 \).
14. This is similar to measurements in general (cont-d)

- In measurements, we often also have nonlinear transformations.
- The energy of an earthquake can be measured either by its energy, or by the logarithm of its energy – which is the usual Richter scale.
- Similarly, the energy of a signal can be measured in the usual energy units, or in decibels, which is the logarithmic scale.
- In some applications, more complex transformations are used as well.
- Similarly to this, we can potentially envision non-linear transformation between different scales of degree of similarity.
- What form can these transformations have?
15. What are possible nonlinear transformations?

- Let us analyze what are reasonable transformations in general.
- First of all, all linear transformations are reasonable.
- If a transformation from one scale to another is reasonable, then an inverse transformation is also reasonable.
- If we have two reasonable transformations, then:
 - applying them one after another – i.e., performing a superposition of these transformations
 - should also lead to a reasonable transformation.
- Thus, the class of all reasonable transformations should be closed under taking the inverse and under taking the superposition.
- In mathematics, such classes are called transformation groups.
- Finally, our goal is to use this information in computer-aided decision making.
16. What are possible nonlinear transformations (cont-d)

- In each computer, we can only store finitely many values.
- So it makes sense to limit ourselves to classes of transformations which are determined by finitely many parameters.
- Such transformation groups are called finite-dimensional; so:
 - the question of which transformations are reasonable can be reformulated as
 - a question of what are the possible finite-dimensional transformation groups that contain all linear transformations.
- A general description of such groups was conjectured by Norbert Wiener, the father of Cybernetics.
17. What are possible nonlinear transformations (cont-d)

- This conjecture was proved in the 1960s.
- In particular, for functions of one variables, all the transformations from each such group must be fractionally linear:

\[
g(x) = \frac{A \cdot x + B}{1 + C \cdot x}.
\]
18. Let us apply this conclusion to our case

- Both the similarity measure $s(a, b) = f(d(a, b))$ and the original metric $d(a, b)$ describe the similarity between the two objects a and b.
- Thus, we can consider similarity and metric as representing the same quantity in two different scales.
- So, based on what we have concluded, the transformation $f(d)$ between these two scales must be fractionally-linear:
 \[
 f(d) = \frac{A \cdot d + B}{1 + C \cdot d}
 \]
 for some A, B, and C.
- To find the values of these three parameters, let us recall the above-mentioned properties of the function $f(d)$:
 - that $f(0) = 1$,
 - that $f(d) \to 0$ as $d \to \infty$, and
 - that $f(d)$ is a decreasing function of d.
19. Let us apply this conclusion to our case (cont-d)

- Substituting \(d = 0 \) into the general formula and equating the result to 1, we conclude that \(B = 1 \), so
 \[
 f(d) = \frac{A \cdot d + 1}{1 + C \cdot d}.
 \]

- For \(d \to \infty \), this expression tends to \(\frac{A}{C} \).

- Thus, the fact that this limit should be equal to 0 means that \(A = 0 \).

- Thus, the desired nonlinear transformation has the form
 \[
 f(d) = \frac{1}{1 + C \cdot d}.
 \]

- The requirement that the function \(f(d) \) is decreasing leads to \(C > 0 \).
20. From “almost exactly” to “exactly”.

- This is almost exactly the desired formula.
- Let us take into account that the distance $d(a, b)$ can also be described by using different measuring units:
 - if for distance, we select a measuring unit which is C times smaller than the original one,
 - then the new numerical values of the distance take the form

\[d' = C \cdot d. \]

- If we describe the distance in these new units, then the above formula takes exactly the desired form $f(d') = \frac{1}{1 + d'}$.

- Thus, we have indeed explained the emergence of the empirical formula – it is the only formula corresponding to natural requirements.
21. Main idea behind the second explanation

- In the first explanation, we focused on analyzing what is the actual dependence between the distance and the similarity.
- In this explanation, we ignored the fact that similarity usually comes from people marking a value on the interval \([0, 1]\).
- In reality, such markings are very uncertain.
- There is a well-known “seven plus minus two law” according to which, in particular:
 - when we do such types of markings,
 - we, in effect, only distinguish between 5 to 9 different values.
- Thus, the accuracy with which we mark the similarity value ranges:
 - from 11\% (corresponding to 9 classes on the interval \([0, 1]\))
 - to 20\% (corresponding to 5 classes on this interval).
- This inaccuracy can be easily observed.
22. Main idea behind the second explanation (cont-d)

- If we ask people to mark the same thing again, they may use somewhat different values (within this accuracy).

- With such imprecise values, it makes sense:
 - not to seek exact matching of the dependence \(s = f(d) \),
 - but rather to look for functions which are the fastest to compute.

- Indeed, as we have mentioned, the ultimate goal of assigning similarity values is to make decisions.

- Often, we need to make decision as soon as possible.

- So, the question becomes: of all the functions \(f(d) \) that satisfy the above three conditions, which ones are the fastest to compute?
23. Which functions are the fastest to compute?

- In a computer, the only directly hardware supported operations are arithmetic ones: addition, subtraction, multiplication, and division.
- Everything else is computed as a sequence of such arithmetic operations, for which the operands are:
 - either constants,
 - or the input values,
 - or the results of previous arithmetic operations.
- For example:
 - when we ask a computer to compute the values \(\exp(x) \),
 - what the computer will actually compute is the sum of the first few terms of the Taylor series for this function:

\[
\exp(x) \approx 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^k}{k!}.
\]
24. **Which functions are the fastest to compute (cont-d)**

- So, the computation time of each computation is, crudely speaking, proportional to the number of arithmetic operations.
- So, the fastest computations are the ones that use the smallest number of such arithmetic operations.
25. Computing \(f(d) \) must include division

- Let us first explain that computing the function \(f(d) \) must include division.
- Indeed, if this computation only included addition, subtraction, and multiplication, then we would compute a polynomial.
- Polynomials do not tend to 0 as \(d \to \infty \).
- Thus, at least one arithmetic operation must be division.
26. Can we have just one division?

- Can we just have one division? Not really.
- In this case, when we start with d and constants, the only things we can get by division are

$$\frac{C}{d}, \quad \frac{d}{C}, \quad \text{and} \quad \frac{d}{d} = 1.$$

- The first two expressions do not satisfy the property $f(0) = 1$.
- The third expression is not decreasing to 0 as d increases.
- Thus, we cannot have only one arithmetic operation, we must have at least one more arithmetic operation.
27. Which functions \(f(d) \) can be computed in two computational steps?

- The empirical expression requires two arithmetic operations:
 - first, we add 1 and \(d \), and
 - then, we divide 1 by \(1 + d \).

- So, this is clearly one of the fastest-to-compute functions \(f(d) \).

- What other functions \(f(d) \) satisfying all three requirements we can compute in two arithmetic operations – one of which is division.
28. What if we perform division first

- If we perform division first, we get
 \[\frac{C}{d} \text{ or } \frac{d}{C}. \]

- If we start with the first of these options, then
 - on the next step, as a second input to the second arithmetic operation,
 - we can have a constant or the original value \(d\).

- Thus, we have the following options.

- If the second operation is addition or subtraction, we get
 \[\frac{C}{d} + C' \text{ or } \frac{C}{d} \pm d. \]

- None of these expressions satisfies the condition \(f(0) = 1\).

- If the second operation is multiplication, we get
 \[\frac{C}{d} \cdot C' = \frac{C \cdot C'}{d} \text{ or } \frac{C}{d} \cdot d = C. \]
29. What if we perform division first (cont-d)

- Here, we do not get any new functions.

- If we second operation is division, then we get:

 \[
 \frac{C'}{d} = \frac{C}{C'} \cdot d, \quad \frac{C''}{d} = \frac{C'}{C} \cdot d, \quad \frac{C'}{d} = \frac{C'}{C} \cdot d^2, \quad \frac{d}{C} = \frac{1}{C} \cdot d^2.
 \]

- The first and third expressions do not satisfy the requirement that \(f(0) = 1 \).

- The second and fourth are polynomials – and we have already mentioned that the transformation \(f(d) \) cannot be a polynomial.
30. **What if we first compute \(d/C \)**

- What if first compute \(d/C \)?
- On the next step, as a second input to the second arithmetic operation, we can have a constant or the original value \(d \).
- If the second operation is addition, subtraction, or multiplication, we get a polynomial.
- We have already mentioned that the function \(f(d) \) cannot be a polynomial.
- This, the only possible option is when the second arithmetic operation is division.
31. What if we first compute \(d/C \) (cont-d)

- In this case, we get the following options:

\[
\frac{1}{C} \cdot \frac{d}{C'} = C \cdot d, \quad \frac{C'}{C} = \frac{C \cdot C'}{d},
\]

\[
\frac{1}{C} \cdot \frac{d}{d} = \frac{1}{C'}, \quad \frac{d}{C} \cdot \frac{1}{d} = C.
\]

- In the first case we get a polynomial.
- In the second case, we do not satisfy the requirement that \(f(0) = 1 \).
- In the third and fourth cases, we get constants.
- So, none of these options lead to functions \(f(d) \) that satisfy all three requirements.
What if division is the second arithmetic operation

- The cases when division is the first arithmetic operation do not lead to a function \(f(d) \) that satisfies all three conditions.
- So, we need to perform division only as a second arithmetic operation.
- In this case, the first arithmetic operation is addition, subtraction, or multiplication.
- Thus, as a result of the first arithmetic operation, we get \(d + C \), \(C - d \), or \(C \cdot d \).
- When the first arithmetic operation results in \(d + C \), we have \(d \), constants, and \(d + C \).
- Thus, we have the following division options.
- The first option is \(\frac{C'}{d + C} \).
What if division is the 2nd arithmetic operation (cont-d)

- The requirement that $f(0) = 1$ leads to $C' = C$, so this expression is equal to
 \[
 \frac{C}{d + C} = \frac{1}{1 + C^{-1} \cdot d}.
 \]
- This is exactly the expression that, as we have shown, is equivalent to the desired one after an appropriate re-scaling of distance.
- The second option is $\frac{d}{d + C'}$ which does not satisfy the condition $f(0) = 1$.
- The third option is $\frac{d + C'}{C'} = \frac{1}{C'} \cdot d + \frac{C'}{C'}$.

 - This is a polynomial, so it cannot satisfy all three conditions.
- The fourth option is $\frac{d + C}{d} = 1 + \frac{C}{d}$.

 - This option does not satisfy the condition $f(0) = 1$.
34. What if division is the 2nd arithmetic operation (cont-d)

- When the first arithmetic operation is substraction, the conclusions are similar.
- When first operation results in $C \cdot d$, we have d, constants, and $C \cdot d$.
- Thus, we have the following division options.
- The first option is $\frac{C''}{C \cdot d} = \frac{C'''}{d}$, where $C''' \overset{\text{def}}{=} \frac{C''}{C}$.
- So, in this case, we do not get a new function.
- The second option is $\frac{d}{C \cdot d} = \frac{1}{C}$, a constant function which is not decreasing.
- The third option is $\frac{C \cdot d}{C'} = \frac{C'}{C'} \cdot d$, a polynomial.
- The fourth option is $\frac{C \cdot d}{d} = C$, a constant.
35. Summarizing

- We have considered all possible options; so
 - out of all functions $f(d)$ that satisfy all three requirements,
 - the only functions that can be computed the fastest – in two arithmetic steps – are the functions of type $1/(1 + C \cdot d)$.

- We showed that these functions are, in effect, equivalent to the desired formula $1/(1 + d)$.

- Thus, we get the second explanation of the effectiveness of the empirical formula – that this function is the fastest to compute.
36. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and
 - HRD-1834620 and HRD-2034030 (CAHSI Includes).

- It was also supported by the AT&T Fellowship in Information Technology.

- It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.