Quantum Econometrics: How to Explain Its Quantitative Successes and How the Resulting Formulas Are Related to Scale Invariance, Entropy, and Fuzziness

Kittawit Autchariyapanitkul¹, Olga Kosheleva² Vladik Kreinovich², Songsak Sriboonchitta³

¹Faculty of Economics, Maijo University Chiang Mai, Thailand, kittawit_a@mju.ac.th ²University of Texas at El Paso, El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu ³Faculty of Economics, Chiang Mai University Chiang Mai 50200 Thailand, songsajecon@gmail.com

1. Formulation of the Problem

- Many aspects of human behavior seem to be well-described by formulas from quantum physics.
- This is understandable on the qualitative level: similar to quantum physics,
 - every time we gain new knowledge,
 - we inevitably change the system.
- For example:
 - once we learn a new dependence between the economic variables,
 - we can make better predictions of economic phenomena and thus,
 - change the behavior of decision makers.
- But how can we explain this success on the quantitative level?

Formulation of the . . . Non-quantum . . . How is This Related to . . Analysis of the Problem Main Result Relation to Entropy Relation to Fuzziness Probabilistic . . . Probabilistic and . . . Home Page Title Page **>>** Page 2 of 25 Go Back Full Screen Close Quit

2. Non-quantum vs. Quantum Probabilities: 2-Slot Experiment

- We have a particle generator e.g., a light source or a radio source that generates photons.
- There is an array of sensors at different distances from this generator.
- By detecting the particles, we estimate the probability density $\rho(x)$ corresponding to the sensor's location x.
- There is a barrier with 2 slots between the generator and the sensors.
- If we open only the 1st slot, we get $\rho_1(x)$.
- If we open only the 2nd slot, we get $\rho_2(x)$.
- If we open both slots, hat will then be the resulting probability density $\rho(x)$?

3. Non-quantum vs. Quantum (cont-d)

- A particle reaches the sensor if it either went through the 1st slot or through the 2nd slot.
- THus, in non-quantum physics, $\rho(x) = \rho_1(x) + \rho_2(x)$.
- However, this is *not* what we observe.
- In quantum physics, we need a complex-valued function $\psi(x)$ called wave function for which

$$\rho(x) = |\psi(x)|^2.$$

- In 2-slot case, $\psi(x) = \psi_1(x) + \psi_2(x)$.
- If both $\rho_i(x)$ are positive real numbers, we have

$$\rho(x) = \left(\sqrt{\rho_1(x)} + \sqrt{\rho_2(x)}\right)^2 \neq \rho_1(x) + \rho_2(x).$$

• In general,

$$\left(\sqrt{\rho_1(x)} - \sqrt{\rho_2(x)}\right)^2 \le \rho(x) \le \left(\sqrt{\rho_1(x)} + \sqrt{\rho_2(x)}\right)^2.$$

Formulation of the...

Non-quantum . . .

How is This Related to . . .

Analysis of the Problem

Main Result

Relation to Entropy

Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page
Title Page

← →→

□

Page 4 of 25

Go Back

Full Screen

Close

4. How is This Related to Human Behavior

- In the early 1980s, researchers from the Republic of Georgia observed kids in a 2-door room.
- On the other side, boxes with treats were placed.
- In some cases, both doors were open, in other cases, only one door was open.
- researchers measured how frequently kids pick up treats at different location x.
- For the older kids, $f(x) \approx f_1(x) + f_2(x)$.
- However, for younger kids (3-4 years old), they got:

$$f(x) \approx \left(\sqrt{f_1(x)} + \sqrt{f_2(x)}\right)^2$$
.

- Some aspects of adult behavior are also well described by quantum formulas.
- This is the main idea behind quantum econometrics.

Non-quantum . . .

Formulation of the . . .

How is This Related to . . .

Analysis of the Problem

Main Result

Relation to Fuzziness

Probabilistic . . .

Relation to Entropy

Probabilistic and . . .

Home Page

Title Page

Page 5 of 25

Go Back

Full Screen

Close

Analysis of the Problem

• Based on $\rho_1(x)$ and $\rho_2(x)$, we want to estimate $\rho(x)$:

$$\rho(x) \approx f(\rho_1(x), \rho_2(x)).$$

- What are the natural properties of the corresponding algorithm f(a,b)?
- It does not matter which door is called st, so we should have f(a,b) = f(b,a) - commutativity.
- Small changes in $\rho_i(x)$ should lead to small changes in $\rho(x)$, so f(a,b) should be continuous.
- If $\rho_i(x)$ increases, $\rho(x)$ should increase, so f(a,b)should be monotonic.
- For 3 slots, the estimate should be the same whether we first combine 1-2 or 2-3:

$$f(f(a,b),c) = f(a,f(b,c)) - associativity.$$

Non-quantum . . .

Formulation of the . . .

How is This Related to . . Analysis of the Problem

Main Result

Relation to Entropy Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

Page 6 of 25

Go Back

Full Screen

Close

6. Final Natural Requirement: Scale-Invariance

- By definition, the probability density is probability divided by the length or area (or volume).
- We can use different units for measuring length, and thus, different units for measuring area or volume:
 - if we replace the original measuring unit with the one which is λ times smaller,
 - the numerical values of the probability density gets multiplied by λ .
- It is reasonable to require that the estimating function f(a,b) should not change after this re-scaling:
 - $if \rho(x) = f(\rho_1(x), \rho_2(x))$
 - then $\lambda \cdot \rho(x) = f(\lambda \cdot \rho_1(x), \lambda \cdot \rho_2(x)).$
- Thus, we require that $f(\lambda \cdot a, \lambda \cdot b) = \lambda \cdot f(a, b)$ for all possible values a, b, and λ .

7. Main Result

Definition. We say that $f: \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is a scale-invariant estimation function if it is:

- commutative, associative, continuous,
- (non-strictly) increasing,
- and $f(\lambda \cdot a, \lambda \cdot b) = \lambda \cdot f(a, b)$ for all a, b, and λ .

Proposition. The only scale-invariant estimation functions are:

$$f(a,b) = 0$$
, $f(a,b) = \min(a,b)$, $f(a,b) = \max(a,b)$,
 $and \ f(a,b) = (a^{\alpha} + b^{\alpha})^{1/\alpha} \ for \ some \ \alpha$.

Non-quantum . . . How is This Related to . . Analysis of the Problem Main Result Relation to Entropy Relation to Fuzziness Probabilistic . . . Probabilistic and . . . Home Page Title Page **>>** Page 8 of 25 Go Back Full Screen Close Quit

Formulation of the . . .

8. Discussion

- Reminder: $f(a,b) = (a^{\alpha} + b^{\alpha})^{1/\alpha}$.
- For $\alpha = 1$, we get the usual formula for the probability for the event $A \vee B$ when A and B are disjoint.
- For $\alpha = 0.5$, we get the quantum formula.
- Thus, we get the desired justified general formula for which special cases are:
 - the traditional probabilistic formula f(a, b) = a + b for which

$$\rho(x) = \rho_1(x) + \rho_2(x)$$
 and

– the quantum formula $f(a,b) = (a^{0.5} + b^{0.5})^2$, for which

$$\rho(x) = \left(\sqrt{\rho_1(x)} + \sqrt{\rho_2(x)}\right)^2.$$

Non-quantum...

How is This Related to . . .

Analysis of the Problem

Main Result

Relation to Entropy

Train restare

Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

Go Back

Full Screen

Close

Relation to Entropy

- Reminder: $f(a,b) = (a^{\alpha} + b^{\alpha})^{1/\alpha}$.
- Probabilistic case is $\alpha = 1$, quantum is $\alpha = 0.5$.
- Most aspects of human behavior can be described by the usual probabilistic formulas.
- This means that for human behavior, we have $\alpha \approx 1$.
- Quantum formulas capture some aspects of human behavior.
- Since quantum formulas correspond to $\alpha < 1$, the actual α is $\alpha = 1 - \varepsilon$ for some small $\varepsilon > 0$.
- In this case, $\rho(x) \approx \rho_1(x) + \rho_2(x) + \varepsilon \cdot \Delta \rho(x)$, where $\Delta \rho(x) \stackrel{\text{def}}{=} -\rho_1(x) \cdot \ln(\rho_1(x)) - \rho_2(x) \cdot \ln(\rho_2(x)) (-(\rho_1(x) + \rho_2(x)) \cdot \ln(\rho_1(x) + \rho_2(x))).$
- The sum of $-\rho(x) \cdot \ln(\rho(x))$ is Shannon's entropy!

Non-quantum . . .

Formulation of the . . .

How is This Related to . .

Analysis of the Problem

Main Result

Relation to Entropy Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

Page 10 of 25

Go Back

Full Screen

Close

10. Relation to Fuzziness

- For probabilities, $P(A \vee B) \leq P(A) + P(B)$, so $\rho(x) \leq \rho_1(x) + \rho_2(x)$.
- However, in the quantum case,

$$\rho(x) = \rho_1(x) + \rho_2(x) + 2\sqrt{\rho_1(x) \cdot \rho_2(x)} > \rho_1(x) + \rho_2(x).$$

- So, quantum formulas cannot be interpreted in terms of the probabilities; same for all $\alpha < 1$.
- The fact that some aspects of human behavior cannot be described in probabilistic terms is well known, e.g.,:
 - people estimate the probability that a person X is a professional and a feminist as higher than
 - the probability that this person is a feminist.
- So, P(A), P(B), $P(A \vee B)$ are not probabilities, but degrees of certainty as in fuzzy logic.

Formulation of the . . . Non-quantum . . . How is This Related to . . Analysis of the Problem Main Result Relation to Entropy Relation to Fuzziness Probabilistic . . . Probabilistic and . . . Home Page Title Page **>>** Page 11 of 25 Go Back Full Screen Close Quit

Probabilistic Interpretation

- Another option: take into account that $\rho_1(x)$ is the probability that:
 - the particle passed through the 1st slot and
 - did not pass through the 2nd slot:

$$\rho_1(x) = P(A_1) - P(A \& A_2), \ \rho_2(x) = P(A_2) - P(A \& A_2).$$

• So, to describe the probability $C(u,v) \stackrel{\text{def}}{=} P(A_1 \& A_2)$ in terms of $u \stackrel{\text{def}}{=} P(A_1)$ and $v \stackrel{\text{def}}{=} P(A_2)$, we have:

$$(u + v - C(u, v))^{\alpha} = (u - C(u, v))^{\alpha} + (v - C(u, v))^{\alpha}.$$

• In the quantum case, we have an explicit expression

$$C(u,v) = \frac{u + v \pm \sqrt{(u+v)^2 - 12u \cdot v}}{3}$$

• This operation C(u, v) is not associative.

Formulation of the . . .

Non-quantum . . .

How is This Related to . .

Analysis of the Problem

Main Result

Relation to Entropy Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

>>

Page 12 of 25

Go Back

Full Screen

Close

12. Probabilistic and Fuzzy Interpretations

- In the probabilistic interpretation, we assume that the particle cannot go through both slots.
- We ended up by allowing a non-zero probability that the particle goes through both slots.
- This is exactly what fuzzy does:
 - instead of assuming that a person is either young or not young,
 - it takes into account that a person can be to some extent young and to some extent not young.

13. Acknowledgments

- We acknowledge support of Center of Excellence in Econometrics, Chiang Mai University, Thailand.
- This work was also supported in part by the US National Science Foundation grant HRD-1242122.

- By taking $b \to 0$ and using continuity, we also get
- By commutativity, f(a,0) = 0 for all a.

f(0,0) = 0; thus, f(0,b) = 0 for all b.

- Let us prove, by contradiction, that $f(1,a) \leq 1$ for all a.
- Indeed, if for some $a, b \stackrel{\text{def}}{=} f(1,a) > 1$, then, due to associativity and f(1,1) = 1:

$$f(1,b) = f(1,f(1,a)) = f(f(1,1),a) = f(1,a) = b.$$

• Due to scale-invariance with $\lambda = b$, the equality f(1,b) = b implies that $f(b,b^2) = b^2$; thus:

$$f(1,b^2) = f(1,f(b,b^2)) = f(f(1,b),b^2) = f(b,b^2) = b^2.$$

Non-quantum . . .

How is This Related to . .

Formulation of the . . .

Analysis of the Problem

Main Result

Relation to Entropy Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . . Home Page

Title Page

Page 15 of 25

Go Back

Full Screen

Close

- Similarly, from $f(1, b^2) = b^2$, we conclude that:
 - for $b^4 = (b^2)^2$, we have $f(1, b^4) = b^4$, and,
 - in general, that $f(1, b^{2^n}) = b^{2^n}$ for every n.
- Scale invariance with $\lambda = b^{-2^n}$ implies $f(b^{-2^n}, 1) = 1$.
- In the limit $n \to \infty$, we get f(0,1) = 1, which contradicts to our assumption f(0,1) = 0.
- This contradiction shows that indeed, $f(1, a) \leq 1$.
- For $a \ge 1$, monotonicity implies $1 = f(1, 1) \le f(1, a)$.
- So, $f(1, a) \le 1$ implies that f(1, a) = 1.
- If $0 < a' \le b'$, then for $r \stackrel{\text{def}}{=} \frac{b'}{a'} \ge 1$, scale-invariance with $\lambda = a'$ implies $a' \cdot f(1, r) = f(a' \cdot 1, a' \cdot r) = f(a', b')$.
- So, $f(a, b) = \min(a, b)$ for all a and b.

Non-quantum . . .

How is This Related to .

Formulation of the . . .

Analysis of the Problem

Main Result

Relation to Entropy

Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

(**4)**

Page 16 of 25

Go Back

Full Screen

Close

Close

16. Proof: Case When f(1,1) = 1 and f(0,1) > 0

- Let us show that in this case, f(0,0) = 0.
- Indeed, scale-invariance with $\lambda=2$ implies that from f(0,0)=a, we can conclude that

$$f(2 \cdot 0, 2 \cdot 0) = f(0, 0) = 2 \cdot a.$$

- Thus $a = 2 \cdot a$, hence a = 0.
- Let us now prove that in this subcase, f(0,1) = 1.
- Indeed, in this case, for $a \stackrel{\text{def}}{=} f(0,1)$, we have, due to f(0,0) = 0 and associativity, that

$$f(0,a) = f(0, f(0,1)) = f(f(0,0), 1) = f(0,1) = a.$$

- Here, a > 0, so by applying scale invariance with $\lambda = a^{-1}$, we conclude that f(0, 1) = 1.
- Let us prove that for every $a \leq b$, we have f(a, b) = b.

Non-quantum . . .

How is This Related to . .

Formulation of the . . .

Analysis of the Problem

Main Result

Relation to Entropy

Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Title Page

Home Page

>>

Page 17 of 25

Go Back

Full Screen

Clos

Close

17. Case f(1,1) = 1 and f(0,1) > 0 (cont-d)

- Let us prove that for every $a \leq b$, we have f(a, b) = b.
- Indeed, from f(1,1) = 1 and f(0,1) = 1, due to scale invariance with $\lambda = b$, we conclude that

$$f(0,b) = b$$
 and $f(1,b) = b$.

- Due to monotonicity, $0 \le a \le b$ implies that $b = f(0,b) \le f(a,b) \le f(b,b) = b$, thus f(a,b) = b.
- Due to commutativity, we now have $f(a, b) = \max(a, b)$ for all a and b.

Non-quantum . . . How is This Related to . . Analysis of the Problem Main Result Relation to Entropy Relation to Fuzziness Probabilistic . . . Probabilistic and . . . Home Page Title Page **>>** Page 18 of 25 Go Back Full Screen Close Quit

Formulation of the . . .

- Let us denote $v(k) \stackrel{\text{def}}{=} f(1, f(\dots, 1) \dots)$ (k times).
- Let us take $v(m \cdot n) = f(1, f(\dots, 1) \dots) (m \cdot n \text{ times}).$
- We can divide the 1s into m groups with n 1s in each.
- Due to associativity,

$$v(m \cdot n) = f(f(1, f(\dots, 1) \dots), \dots, f(1, f(\dots, 1) \dots)).$$

- For each group, we have $f(1, f(\ldots, 1) \ldots) = v(n)$.
- Thus, $v(m \cdot n) = f(v(n), f(\dots, v(n)) \dots)$ (m times).
- We know that $f(1, f(\dots, 1) \dots)$ (m times) = v(m).
- Thus, by using scale-invariance with $\lambda = v(n)$, we conclude that $v(m \cdot n) = v(m) \cdot v(n)$.
- In particular, for every number p and n, we have

$$v(p^n) = (v(p))^n.$$

Non-quantum . . .

How is This Related to . .

Formulation of the . . .

Analysis of the Problem

Main Result

Relation to Entropy

Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

←

Page 19 of 25

Go Back

Full Screen

- CI

Close

- If v(2) = f(1,1) > 1, then by monotonicity, we get $v(3) = f(1,v(2)) \ge f(1,1) = v(2)$.
- In general, we get $v(n+1) \ge v(n)$.
- In this case, the sequence v(n) is (non-strictly) increasing.
- Similarly, if v(2) = f(1,1) < 1, then we get $v(3) \le v(2)$.
- In general, we get $v(n+1) \le v(n)$.
- In this case, the sequence v(n) is strictly decreasing.
- Let us consider these two cases one by one.

Non-quantum...

How is This Related to . .

Analysis of the Problem

Main Result

Relation to Entropy

Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

Page 20 of 25

Go Back

Full Screen

Close

20. $f(1,1) \neq 1$ and v(n) Is Increasing

- Let us first consider the case when the sequence v(n) is increasing.
- In this case, for every three integers m, n, and p, if $2^m \le p^n$, then $v(2^m) \le v(p^n)$, i.e., $(v(2))^m \le (v(p))^n$.
- For all m, n, and p, the inequality $2^m \le p^n$ is equivalent to $m \cdot \ln(2) \le n \cdot \ln(p)$, i.e., to $\frac{m}{n} \le \frac{\ln(p)}{\ln(2)}$.
- Similarly, the inequality $(v(2))^m \ge (v(p))^n$ is equivalent to $\frac{m}{n} \le \frac{\ln(v(p))}{\ln(v(2))}$.
- Thus, "if $2^m \le p^n$ then $(v(2))^m \le (v(p))^n$ " takes the following form:

for every rational $\frac{m}{n}$, if $\frac{m}{n} \le \frac{\ln(p)}{\ln(2)}$ then $\frac{m}{n} \le \frac{\ln(v(p))}{\ln(v(2))}$.

Non-quantum . . .

How is This Related to . .

Formulation of the . . .

Analysis of the Problem

Main Result

Relation to Entropy

Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page
Title Page

Page 21 of 25

Go Back

Full Screen

Clas

Close

- The inequality $p^{n'} \leq 2^{m'}$ is equivalent to $n' \cdot \ln(p) <$ $m' \cdot \ln(2)$, i.e., to $\frac{\ln(p)}{\ln(2)} \le \frac{m'}{n'}$.
- Also, the inequality $(v(p))^{n'} \leq (v(2))^{m'}$ is equivalent to

$$\frac{\ln(v(p))}{\ln(v(2))} \le \frac{m'}{n'}.$$

• Thus, "if $p^{n'} < 2^{m'}$ then $(v(p))^{n'} < (v(2))^{m'}$ " takes the following form:

for every rational
$$\frac{m'}{n'}$$
, if $\frac{\ln(p)}{\ln(2)} \le \frac{m'}{n'}$ then $\frac{\ln(v(p))}{\ln(v(2))} \le \frac{m'}{n'}$.

• Let us denote $\gamma \stackrel{\text{def}}{=} \frac{\ln(p)}{\ln(2)}$ and $\beta \stackrel{\text{def}}{=} \frac{\ln(v(p))}{\ln(v(2))}$.

Non-quantum . . .

How is This Related to . .

Formulation of the . . .

Analysis of the Problem

Main Result

Relation to Entropy

Relation to Fuzziness Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

Page 22 of 25

Go Back

Full Screen

Close

- For every $\varepsilon > 0$, there exist rational numbers $\frac{m}{\epsilon}$ and $\frac{m'}{n'}$ for which $\gamma - \varepsilon \le \frac{m}{n} \le \gamma \le \frac{m'}{n'} \le \gamma + \varepsilon$.
- The above two properties imply that $\frac{m}{n} \leq \beta$ and $\beta \leq$ $\frac{m'}{n'}$ and thus, that $\gamma - \varepsilon \leq \beta \leq \gamma + \varepsilon$, i.e., that $|\gamma - \beta| < \varepsilon$.
- This is true for all $\varepsilon > 0$, so we conclude that $\beta = \gamma$, i.e., that $\frac{\ln(v(p))}{\ln(v(2))} = \gamma$.
- Hence, $\ln(v(p)) = \gamma \cdot \ln(p)$ and thus, $v(p) = p^{\gamma}$ for all integers p.

Non-quantum . . .

Formulation of the . . .

How is This Related to. Analysis of the Problem

Main Result

Probabilistic . . .

Relation to Entropy

Relation to Fuzziness

Probabilistic and . . . Home Page

Title Page

Page 23 of 25

Go Back

Full Screen

Close

23. $f(1,1) \neq 1$: General Case

- We can reach:
 - a similar conclusion $v(p) = p^{\gamma}$ when the sequence v(n) is decreasing and v(2) < 1, and
 - a conclusion that v(p) = 0 if v(2) = 0.
- By definition of v(n), we have

$$f(v(m), v(m')) = v(m + m').$$

- Thus, we have $f(m^{\gamma}, (m')^{\gamma}) = (m + m')^{\gamma}$.
- ullet By using scale-invariance with $\lambda=n^{-\gamma},$ we get

$$f\left(\frac{m^{\gamma}}{n^{\gamma}}, \frac{(m')^{\gamma}}{n^{\gamma}}\right) = \frac{(m+m')^{\gamma}}{n^{\gamma}}.$$

• Thus, for $a = \frac{m^{\gamma}}{n^{\gamma}}$ and $b = \frac{(m')^{\gamma}}{n^{\gamma}}$, we get $f(a, b) = (a^{\alpha} + b^{\alpha})^{1/\alpha}$, where $\alpha \stackrel{\text{def}}{=} 1/\gamma$.

Formulation of the...

Non-quantum . . .

How is This Related to . . .

Analysis of the Problem

Main Result

Relation to Entropy

Relation to Fuzziness

Probabilistic . . .

Probabilistic and . . .

Home Page

Title Page

Page 24 of 25

Go Back

= " 0

Full Screen

Close

24. $f(1,1) \neq 1$: General Case (cont-d)

- Rational numbers $r = \frac{m}{n}$ are everywhere dense on the real line.
- Hence the values r^{γ} are also everywhere dense.
- So, every real number can be approximated, with any given accuracy, by such numbers.
- Thus, continuity implies that $f(a,b) = (a^{\alpha} + b^{\alpha})^{1/\alpha}$ for every two real numbers a and b.
- The proposition is proven.

Page 25 of 25

Go Back

Full Screen

Close