## Why Max and Average Poolings are Optimal in Convolutional Neural Networks

Ahnaf Farhan, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, El Paso, Texas 79968, USA afarhan@miners.utep.edu, olgak@utep.edu, vladik@utep.edu

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance Definitions Definitions and First Results (cont-d) Home Page **>>** Page 1 of 33 Go Back Full Screen Close Quit

- The main objectives of science and engineering are:
  - to describe the world,
  - to predict the future behavior of the world's systems, and
  - to find the best way to improve this behavior.
- The current state of the world is described by numerical values of different physical quantities.
- Some of these values can be directly measured; e.g., we can measure:
  - the distance to a nearby city,
  - the temperature, humidity, and wind speed at different Earth locations.
- Other quantities are difficult (or even impossible) to measure directly.

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance Definitions Definitions and First Results (cont-d) Home Page Title Page **>>** Page 2 of 33 Go Back Full Screen Close Quit

## 2. Need for Data Processing (cont-d)

- Examples:
  - the distance to a nearby star,
  - the temperature on the surface of the Sun, etc.
- Since we cannot measure these quantities y directly, we have to determine them indirectly: namely,
  - we measure the values of easier-to-measure quantities  $x_1, \ldots, x_n$  which are related to y, and then
  - use the measurement results  $\widetilde{x}_1, \ldots, \widetilde{x}_n$  to compute an estimate  $\widetilde{y}$  for the desired quantity y.
- The corresponding computations form an important case of *data processing*.
- Similar computations are needed to estimate:
  - the future values of the quantities of interest and
  - the values of necessary control.

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance Definitions Definitions and First Results (cont-d) Home Page Title Page **>>** Page 3 of 33 Go Back Full Screen Close Quit

## 3. Need for Machine Learning

- In some cases, we know the exact relation  $y = f(x_1, \ldots, x_n)$ .
- E.g., we can predict the future locations of planets.
- In other cases, we need to determine the corresponding relation from the available data.
- Namely, in several situations k = 1, ..., K:
  - we measure the values  $x_1^{(k)}, \ldots, x_n^{(k)}, y^{(k)}$ , and
  - then use this data to find a dependence  $f(x_1, ..., x_n)$ for which  $y^{(k)} \approx f\left(x_1^{(k)}, ..., x_n^{(k)}\right)$  for all k.
- Algorithms for reconstructing the dependence from empirical data are known as *machine learning*.
- At present, the most efficient machine learning algorithms are the algorithms of deep neural networks.

Need for Pooling Which Pooling . . . Natural Properties of a. Scale-Invariance Shift-Invariance **Definitions** Definitions and First . . . Results (cont-d) Home Page Title Page **>>** Page 4 of 33 Go Back Full Screen Close Quit

## 4. Need to Take Uncertainty into Account

- In the ideal situation, when all the values are known exactly, it is often easy to find the dependence; e.g.:
  - if it turns out that all the values corresponding to the dependence  $y = f(x_1)$  fit a straight line,
  - we conclude that the dependence is linear.
- In reality, measurements are never absolutely accurate.
- There is always measurement uncertainty; as a result:
  - even if the actual dependence is linear,
  - we corresponding pairs  $\left(\widetilde{x}_1^{(k)},\widetilde{y}^{(k)}\right)$  do not lie on the same straight line.



#### 5. Need for Convolutional Neural Networks

- In many practical situations, the available data comes:
  - in terms of *time series* when we have values measured at equally spaced time moments or
  - in terms of an *image* when we have data corresponding to a grid of spatial locations.
- Neural networks for processing such data are known as convolutional neural networks.



### 6. Need for Pooling

- We want to decrease the distortions caused by measurement errors.
- For that, we take into account that usually, the actual values at nearby points in time or space are close to each other.
- As a result,
  - instead of using the measurement-distorted value at each point,
  - we can take into account that values at nearby points are close, and
  - combine ("pool together") these values into a single more accurate estimate.



# 7. Which Pooling Techniques Work Better: Empirical Results

- In principle, we can have many different pooling algorithms.
- It turns out that empirically, in general, the most efficient pooling algorithm is *max-pooling*:

$$a = \max(a_1, \dots, a_m).$$

- The next efficient is average pooling, when we take the arithmetic average  $a = \frac{a_1 + \ldots + a_m}{m}$ .
- In this paper, we provide a theoretical explanation for this empirical observation.
- Namely, we prove that max and average poolings are indeed optimal.

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance Definitions Definitions and First . . . Results (cont-d) Home Page Title Page **>>** Page 8 of 33 Go Back Full Screen Close Quit

## 8. What Is Pooling: Towards a Precise Definition

- We start with m values  $a_1, \ldots, a_m$ , and we want to generate a single value a that represents all these values.
- In the case of arithmetic average, we select a for which  $a_1 + \ldots + a_m = a + \ldots + a$  (m times).
- In general, pooling means that:
  - we select some combination operation \* and
  - we then select the value a for which  $a_1 * ... * a_m = a * ... * a (<math>m$  times).
- For example:
  - if, as a combination operation, we select  $\max(a, b)$ ,
  - then the corresponding condition  $\max(a_1, \ldots, a_n) = \max(a, \ldots, a) = a$  describes the max-pooling.
- From this viewpoint, selecting pooling means selecting an appropriate combination operation.



## 9. Natural Properties of a Combination Operation

- The combination operation transforms:
  - two non-negative values such as intensity of an image at a given location
  - into a single non-negative value.
- The result of applying this operation should not depend on the order in which we combine the values.
- Thus, we should have a \* b = b \* a (commutativity) and a \* (b \* c) = (a \* b) \* c (associativity).



# 10. What Does It Mean to Have an Optimal Pooling?

- Optimality means that on the set of all possible combination operations, we have a preference relation  $\leq$ .
- $A \leq B$  means that the operation B is better than (or of the same quality as) the operation A.
- This relation should be transitive:
  - if C is better than B and B is better than A,
  - then C should be better than A.
- An operation A is optimal if it is better than (or of the same quality as) any other operation  $B: B \leq A$ .
- For some preference relations, we may have several different optimal combination operations.
- We can then use this non-uniqueness to optimize something else.

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance **Definitions** Definitions and First Results (cont-d) Home Page Title Page **>>** Page 11 of 33 Go Back Full Screen Close Quit

## 11. What Is Optimal Pooling (cont-d)

- Example:
  - if there are several different combination operations with the best average-case accuracy,
  - we can select, among them, the one for which the average computation time is the smallest possible.
- If after this, we still get several optimal operations,
  - we can use the remaining non-uniqueness
  - to optimize yet another criterion.
- We do this until we get a *final* criterion, for which there is only one optimal combination operation.



#### 12. Scale-Invariance

- Numerical values of a physical quantity depend on the choice of a measuring unit.
- For example, if we replace meters with centimeters, the numerical quantity is multiplied by 100.
- In general:
  - if we replace the original unit with a unit which is  $\lambda$  times smaller,
  - then all numerical values get multiplied by  $\lambda$ .
- It is reasonable to require that the preference relation should not change if we change the measuring unit.
- Let us describe this requirement in precise terms.



## 13. Scale-Invariance (cont-d)

- If, in the original units, we had the operation a \* b, then, in the new units, the operation will be as follows:
  - first, we transform the value a and b into the new units, so we get  $a' = \lambda \cdot a$  and  $b' = \lambda \cdot b$ ;
  - then, we combine the new numerical values, getting  $(\lambda \cdot a) * (\lambda \cdot b)$ ;
  - finally, we re-scale the result to the original units, getting  $aR_{\lambda}(*)b \stackrel{\text{def}}{=} \lambda^{-1} \cdot ((\lambda \cdot a) * (\lambda \cdot b).$
- It therefore makes sense to require that if  $* \leq *'$ , then for every  $\lambda > 0$ , we get  $R_{\lambda}(*) \leq R_{\lambda}(*')$ .



#### 14. Shift-Invariance

- The numerical values also change if we change the starting point for measurements.
- For example, when measuring intensity:
  - we can measure the actual intensity of an image,
  - or we can take into account that there is always some noise  $a_0 > 0$ , and
  - use the noise-only level  $a_0$  as the new starting point.
- In this case, instead of each original value a, we get a new numerical value  $a' = a a_0$ .

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance **Definitions** Definitions and First Results (cont-d) Home Page Title Page **>>** Page 15 of 33 Go Back Full Screen Close Quit

## 15. Shift-Invariance (cont-d)

- If we apply the combination operation in the new units, then in the old units, we get a slightly different result:
  - first, we transform the value a and b into the new units, so we get  $a' = a a_0$  and  $b' = b a_0$ ;
  - then, we combine the new numerical values, getting

$$(a-a_0)*(b-a_0);$$

- finally, we re-scale the result to the original units, getting  $aS_{a_0}(*)b \stackrel{\text{def}}{=} (a a_0) * (b a_0) + a_0$ .
- It makes sense to require that the preference relation not change if we simply change the starting point.
- So if  $* \leq *'$ , then for every  $a_0$ , we get  $S_{a_0}(*) \leq S_{a_0}(*')$ .



#### 16. Weak Version of Shift-Invariance

- Alternatively, we can have a weaker version of this "shift-invariance".
- Namely, we require that shifts in a and b imply a possibly different shift in a \* b, i.e.,
  - if we shift both a and b by  $a_0$ ,
  - then the value a \* b is shifted by some value  $f(a_0)$  which is, in general, different from  $a_0$ .
- Now, we are ready to formulation our results.



#### 17. Definitions

- By a combination operation, we mean a commutative, associative operation a \* b that:
  - transforms two non-negative real numbers a and b
  - into a non-negative real number a \* b.
- By an optimality criterion, we need a transitive reflexive relation  $\leq$  on the set of all combination operations.
- We say that a combination operation  $*_{opt}$  is optimal  $w.r.t. \leq if * \leq *_{opt}$  for all combination operations \*.
- We say that  $\leq$  is final if there exists exactly one  $\leq$ optimal combination operation.
- We say that an optimality criterion is scale-invariant if for all  $\lambda > 0$ ,  $* \leq *'$  implies  $R_{\lambda}(*) \leq R_{\lambda}(*')$ , where:

$$aR_{\lambda}(*)b \stackrel{\text{def}}{=} \lambda^{-1} \cdot ((\lambda \cdot a) * (\lambda \cdot b)).$$

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance **Definitions** Definitions and First . . . Results (cont-d) Home Page Title Page **>>** Page 18 of 33 Go Back Full Screen Close Quit

• We say that an optimality criterion is shift-invariant if for all  $a_0, * \leq *'$  implies  $S_{a_0}(*) \leq S_{a_0}(*')$ , where:

$$aS_{a_0}(*)b \stackrel{\text{def}}{=} ((a - a_0) * (b - a_0)) + a_0.$$

- We say that  $\leq$  is weakly shift-invariant if for every  $a_0$ , there exists  $f(a_0)$  s.t.  $* \leq *'$  implies  $W_{a_0}(*) \leq W_{a_0}(*')$ , where  $aW_{a_0}(*)b \stackrel{\text{def}}{=} ((a - a_0) * (b - a_0)) + f(a_0)$ .
- **Proposition 1.** For every final, scale- and shift-invariant ≤, the optimal combination operation \* is

$$a*b = \min(a,b) \text{ or } a*b = \max(a,b).$$

- This result explains why max-pooling is empirically the best combination operation.
- Note that this result does not contradict uniqueness as we requested.

Need for Data Processing Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance Definitions Definitions and First . . . Results (cont-d) Home Page Title Page **>>** Page 19 of 33 Go Back Full Screen Close Quit

## 19. Results (cont-d)

- Indeed, there are several different final scale- and shift-invariant optimality criteria.
- For each of these criteria, there is only one optimal combination operation.
- For some of these optimality optimality criteria, the optimal combination operation is min(a, b).
- For other criteria, the optimal combination operation is  $\max(a, b)$ .
- Proposition 2. For every final, scale-invariant and weakly shift-invariant  $\preceq$ , the optimal \* is:

$$a * b = 0$$
,  $a * b = \min(a, b)$ ,  $a * b = \max(a, b)$ , or  $a * b = a + b$ .

• This result explains why max-pooling and average-pooling are empirically the best combination operations.

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance **Definitions** Definitions and First . . . Results (cont-d) Home Page Title Page **>>** Page 20 of 33 Go Back Full Screen Close Quit

## 20. Acknowledgments

• This work was supported in part by the US National Science Foundation grant HRD-1242122 (Cyber-ShARE).

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance **Definitions** Definitions and First . . . Results (cont-d) Home Page Title Page **>>** Page 21 of 33 Go Back Full Screen Close Quit

- Let us first prove that the optimal operation  $*_{\text{opt}}$  is itself scale-invariant:  $R_{\lambda}(*_{\text{opt}}) = *_{\text{opt}}$  for all  $\lambda > 0$ .
- The fact that  $*_{opt}$  is optimal means that  $* \leq *_{opt}$  for all \*.
- In particular,  $R_{\lambda^{-1}}(*) \leq *_{\text{opt}}$  for all \*.
- Due to scale-invariance of the optimality criterion, this implies that  $* \leq R_{\lambda}(*_{\text{opt}})$  for all \*.
- Thus, the operation  $R_{\lambda}(*_{\text{opt}})$  is also optimal.
- But since the optimality criterion is final, there is only one optimal operation, so  $R_{\lambda}(*_{\text{opt}}) = *_{\text{opt}}$ .
- Scale-invariance is proven.
- Shift-invariance is proven similarly.
- For Proposition 2, we can similarly prove that the optimal \* is weakly shift-invariant:  $W_{a_0}(*_{\text{opt}}) = *_{\text{opt}}$ .

Need for Data Processing

Need for Pooling

----

Which Pooling . . .

Natural Properties of a . .

Scale-Invariance

Shift-Invariance

Definitions and First . . .

**Definitions** 

Results (cont-d)

Home Page

Title Page

|**|** | |

Page 22 of 33

Go Back

Full Screen

Clos

Close

- Let a \* b be the optimal combination operation.
- We have shown that this operation is scale-invariant and shift-invariant.
- Let us prove that it has one of the above two forms.
- For every pair (a, b), we can have three different cases: a = b, a < b, and a > b.
- Let us consider them one by one.
- Let us first consider the case when a = b.
- Let us denote  $v \stackrel{\text{def}}{=} 1 * 1$ .
- From scale-invariance with  $\lambda = 2$ , from 1 \* 1 = v, we get 2 \* 2 = 2v.
- From shift-invariance with s = 1, from 1 \* 1 = v, we get 2 \* 2 = v + 1.

Need for Data Processing

Need for Pooling

Which Pooling...

Natural Properties of a . . .

Scale-Invariance

Shift-Invariance

Definitions

Definitions and First . . .

Results (cont-d)

Home Page

Title Page

(4 **)** 

**→** 

Page 23 of 33

Go Back

Full Screen

Close

- Thus, 2v = v + 1, hence v = 1, and 1 \* 1 = 1.
- For a > 0, by applying scale-invariance with  $\lambda = a$  to the formula 1 \* 1 = 1, we get a \* a = a.
- For a=0, if we denote  $c\stackrel{\text{def}}{=} 0*0$ , then, by applying shift-invariance with s=1 to 0\*0=c, we get

$$1 * 1 = c + 1$$
.

- Since we already know that 1 \* 1 = 1, this means that c + 1 = 1 and thus, that c = 0, i.e., that 0 \* 0 = 0.
- So, for all  $a \ge 0$ , we have a \* a = a.
- In this case,  $\min(a, a) = \max(a, a) = a$ , so we have  $a * a = \min(a, a)$  and  $a * a = \max(a, a)$ .
- Let us now consider the case when a < b. In this case, b a > 0.

Need for Data Processing

Need for Pooling

Which Pooling...

Natural Properties of a . . .

Scale-Invariance
Shift-Invariance

Definitions

Results (cont-d)

Home Page

Definitions and First . . .

Title Page





Page 24 of 33

Go Back

Full Screen

Close

- Let us denote  $t \stackrel{\text{def}}{=} 0 * 1$ .
  - By applying scale-invariance with  $\lambda = b a > 0$  to the formula 0 \* 1 = t, we get  $0 * (b a) = (b a) \cdot t$ .
  - Now, by applying shift-invariance with s = a to this formula, we get  $a * b = (b a) \cdot t + a$ .
  - $\bullet$  To find possible values of t, let us take into account that the combination operation should be associative.
  - ullet This means, in particular, that for all possible triples a, b, and c for which we have a < b < c, we must have

$$a * (b * c) = (a * b) * c.$$

- Since b < c, by the above formula, we have b \* c = (c b) \* t + b.
- Since  $t \ge 0$ , we have  $b * c \ge b$  and thus, a < b \* c.

Need for Data Processing

Need for Pooling

Natural Properties of a . .

Which Pooling...

Scale-Invariance

Shift-Invariance

Definitions

Definitions and First . . .

Results (cont-d)

Home Page

Title Page





Page 25 of 33

Go Back

Full Screen

Close

0.050

- So, to compute a \* (b \* c), we can also use the above formula, and get  $a * (b * c) = (b * c - a) \cdot t + a =$  $((c-b) \cdot t + b) \cdot t + a = c \cdot t^2 + b \cdot (t-t^2) + a.$
- Let us restrict ourselves to the case when a \* b < c.
- In this case, the general formula implies that  $(a*b)*c = (c-a*b)\cdot t + a*b = (c-((b-a)\cdot t+a))\cdot t + (b-a)\cdot t + a.$
- So  $(a * b) * c = c \cdot t + b \cdot (t t^2) + a \cdot (1 t)^2$ .
- Due to associativity, the two formulas must coincide for all a, b, and c for which a < b < c and c > a \* b.
- These two linear expressions must be equal for all sufficiently large values of c.
- $\bullet$  Thus, the coefficients at c must be equal, i.e., we must have  $t=t^2$ .

Need for Pooling

Natural Properties of a . .

Need for Data Processing

Which Pooling . . .

**Definitions** 

Scale-Invariance

Shift-Invariance

Definitions and First . . .

Results (cont-d)

Home Page

Title Page

**>>** 



Page 26 of 33

Go Back

Full Screen

Close

- From  $t = t^2$ , we conclude that  $t t^2 = t \cdot (1 t) = 0$ , so either t = 0 or 1 t = 0 (in which case t = 1).
- If t = 0, then the above formula has the form a \* b = a, i.e., since a < b, the form  $a * b = \min(a, b)$ .
- If t = 1, then the above formula has the form

$$a * b = (b - a) + a = b.$$

- Since a < b, we get  $a * b = \max(a, b)$ .
- If a > b, then, by commutativity, we have a \* b = b \* a, where now b < a.
- So, either we have  $a * b = \min(a, b)$  for all a and b, or we have  $a * b = \max(a, b)$  for all a and b.
- The proposition is proven.

Need for Pooling

Which Pooling...

Natural Properties of a...

Need for Data Processing

Scale-Invariance
Shift-Invariance

Definitions

Definitions and First . . .

Results (cont-d)

Home Page

Title Page





Page 27 of 33

Go Back

Full Screen

Close

- Let a \* b be the optimal combination operation.
- We have proven that this operation is scale-invariant and weakly shift-invariant.
- This means that a \* b = c implies (a + s) \* (b + s) = c + f(s).
- Let us prove that the optimal operation \* has one of the above four forms.
- Let us first prove that 0 \* 0 = 0.
- Indeed, let s denote 0 \* 0.
- Due to scale-invariance, 0 \* 0 = s implies that  $(2 \cdot 0) * (2 \cdot 0) = 2s$ , i.e., that 0 \* 0 = 2s.
- So, we have s = 2s, hence s = 0 and 0 \* 0 = 0.
- Similarly, if we denote  $v \stackrel{\text{def}}{=} 1 * 1$ , then, due to scale-invariance with  $\lambda = a$ , 1\*1 = v implies that  $a*a = v \cdot a$ .

Need for Data Processing

Need for Pooling

Which Pooling...

Natural Properties of a . . .

Scale-Invariance

Shift-Invariance

Definitions and First

Results (cont-d)

Home Page

Title Page

**←** →

Page 28 of 33

Go Back

Full Screen

Close

- On the other hand, due to weak shift-invariance with  $a_0 = a, \ 0 * 0 = 0$  implies that a \* a = f(a).
- Thus, we conclude that  $f(a) = v \cdot a$ .
- Let us now consider the case when a < b and, thus, b - a > 0.
- Let us denote  $t \stackrel{\text{def}}{=} 0 * 1$ .
- From scale-invariance with  $\lambda = b a$ , from  $0*1 = t \ge 0$ , we get  $0 * (b - a) = t \cdot (b - a)$ .
- From weak shift-invariance with  $a_0 = a$ , we get a \* b = $t \cdot (b-a) + v \cdot a$ , i.e.,  $a * b = t \cdot b + (v-t) \cdot a$ .
- The combination operation should be associative: a \*(b\*c) = (a\*b)\*c.
- When b < c, we have  $b * c = t \cdot c + (v t) \cdot b$ .

Need for Pooling

Natural Properties of a . .

Need for Data Processing

Which Pooling . . .

Scale-Invariance

Shift-Invariance

**Definitions** 

Definitions and First . . .

Results (cont-d)

Home Page

Title Page



Page 29 of 33

Go Back

Full Screen

Close

- We know that  $t \geq 0$ . This means that we have either t > 0 and t = 0.
- Let us first consider the case when t > 0.
- In this case, for sufficiently large c, we have b\*c>a.
- So, by applying the above formula to a and b \* c, we conclude that

$$a*(b*c) = t \cdot (b*c) + (v-t) \cdot a = t^2 \cdot c + t \cdot (v-t) \cdot b + (v-t) \cdot a.$$

- For sufficient large c, we also have a \* b < c.
- In this case, the general formula implies that  $(a*b)*c = (t\cdot b + (v-t)\cdot a)*c = t\cdot c + t\cdot (v-t)\cdot b + (v-t)^2\cdot a.$
- Due to associativity, these formulas must coincide for all a, b, and c for which

$$a < b < c$$
,  $c > a * b$ , and  $b * c > a$ .

Need for Pooling

Which Pooling . . . Natural Properties of a . .

Need for Data Processing

Scale-Invariance

Shift-Invariance

**Definitions** 

Definitions and First . . .

Results (cont-d)

Home Page

Title Page





Page 30 of 33

Go Back

Full Screen

Close

## 30. Proof of Proposition 2 (cont-d)

- ullet These two linear expressions must be equal for all sufficiently large values of c.
- So, the coefficients at c must be equal, i.e., we must have  $t = t^2$ .
- From  $t = t^2$ , we conclude that  $t t^2 = t \cdot (1 t) = 0$ .
- Since we assumed that t > 0, we must have t 1 = 0, i.e., t = 1.
- The coefficients at a must also coincide, so we must have  $v-t=(v-t)^2$ , hence either v-t=0 or v-t=1.
- In the first case, the above formula becomes a \* b = b, i.e.,  $a * b = \max(a, b)$  for all  $a \le b$ .
- Since the operation \* is commutative, this equality is also true for  $b \leq a$  and is, thus, true for all a and b.

Need for Pooling Which Pooling . . . Natural Properties of a . . Scale-Invariance Shift-Invariance **Definitions** Definitions and First . . . Results (cont-d) Home Page Title Page 44 **>>** Page 31 of 33 Go Back Full Screen Close Quit

- In the second case, the above formula becomes a \* b =a + b for all a < b.
- Due to commutativity, this formula holds for all a, b.
- Let us now consider the case when t=0.
- In this case, the above formula takes the form a \* b = $(v-t)\cdot a$ .
- Here,  $a * b \ge 0$ , thus v t > 0.
- If v t = 0, this implies that a \* b = 0 for all a < band thus, due to commutativity, for all a and b.
- Let us now consider the remaining case when v-t>0.
- In this case, if a < b < c, then for sufficiently large c, we have a \* b < c, hence

$$(a*b)*c = (v-t)\cdot(a*b) = (v-t)\cdot((v-t)\cdot a) = (v-t)^2\cdot a.$$

Need for Pooling

Natural Properties of a . .

Need for Data Processing

Which Pooling . . .

Scale-Invariance

Shift-Invariance

**Definitions** 

Definitions and First . . .

Results (cont-d)

Home Page

Title Page



Page 32 of 33

Go Back

Full Screen

Close

## 32. Proof of Proposition 2 (cont-d)

- On the other hand, here  $b * c = (v t) \cdot b$ .
- So, for sufficiently large b, we have  $(v-t) \cdot b > a$ , thus

$$a * (b * c) = (v - t) \cdot a.$$

- Due to associativity, we have  $(v-t)^2 \cdot a = (v-t) \cdot a$ , hence  $(v-t)^2 = v t$ .
- Since v t > 0, we have v t = 1.
- In this case, the above formula takes the form  $a * b = a = \min(a, b)$  for all  $a \le b$ .
- Thus, due to commutativity, we have  $a * b = \min(a, b)$  for all a and b.
- We have thus shown that the combination operation indeed has one of the four forms.
- Proposition 2 is therefore proven.

Need for Data Processing
Need for Pooling
Which Pooling...
Natural Properties of a...
Scale-Invariance
Shift-Invariance
Definitions
Definitions and First...

Home Page

Results (cont-d)

Title Page



**◆** 

Page 33 of 33

Go Back

Full Screen

Close