Let Us Use Negative Examples in Regression-Type Problems Too

Jonatan Contreras, Francisco Zapata, Olga Kosheleva, Vladik Kreinovich, and Martine Ceberio

University of Texas at El Paso, 500 W. University El Paso, TX 79968, USA jmcontreras2@utep.edu, fcozpt@outlook.com, olgak@utep.edu vladik@utep.edu, mceberio@utep.edu

What We Want: A... Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can. Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page **>>** Page 1 of 35 Go Back Full Screen Close Quit

1. What We Want: A General Description

- From the practical viewpoint, the main objective of science is to predict what will happen in the world.
- The main objective of engineering is to find out what changes we need to make in the world to make it better.
- To select the appropriate changes, we need to be able to predict how each possible change will affect the world.
- Thus, in both cases, we need to be able:
 - given the initial conditions x (which include the information about the change),
 - to predict the value of each quantity y characterizing the future state.

2. Often, We Do Not Know the Dependence of y on x

- In some cases e.g., in celestial mechanics we know the equations (or even explicit formulas) that relate:
 - the available information x and
 - the desired quantity y.
- In such cases, in principle, we have an algorithm for predicting y.
- In some situations, this algorithm may not be practical; for example:
 - the fastest we can reasonably reliably predict where the tornado will go in the next 15 minutes is
 - after several hours of computations on a high-performance computer,
 - which makes these computations useless.

Often, We Do Not...

Classification . . .

What We Want: A...

Positive and Negative...

Interval Uncertainty

Negative Intervals Can.

Fuzzy Uncertainty

Future Work

Probabilistic Uncertainty

Home Page

Title Page

4

Page 3 of 35

Go Back

Full Screen

Clos

Close

3. We Don't Know the Dependence (cont-d)

- However, computers get faster and faster.
- So, we will eventually be able to make the corresponding computations practical.
- In many other situations, however, we do not know how y depends on x.
- We need to determine this dependence based on the known examples $(x^{(k)}, y^{(k)})$ of past situations.
- Of course, this knowledge comes from measurements, and measurements are never absolutely accurate.
- So, in reality, instead of knowing the exact value y, we usually know:
 - an interval containing y, and sometimes
 - a probability distribution on this interval describing the frequency of different y's.

4. Classification vs. Regression

- In some cases, the desired variable y takes only finite many values e.g., sick or healthy; poor or rich.
- Such problems are known as *classification problems*.
- In other cases, the variable y can take all possible values within a certain interval.
- Such problems are known as regression problems.

5. Positive and Negative Examples

- There cases when we know both x and y which we will call *positive examples*.
- There are also some cases in which we know x, but we only have partial information about y.
- For example, we know that *y does not belong* to a certain interval.
- We will call such examples negative examples.
- Negative example are ubiquitous in binary classification, when we have only two possible values y_1, y_2 .
- Indeed:
 - every positive example in which $y = y_2$
 - can be interpreted as a negative example in which we know that y is *not* equal to y_1 .

What We Want: A...

Often, We Do Not...

Classification...

Positive and Negative...

Interval Uncertainty

Negative Intervals Can...

Fuzzy Uncertainty

Probabilistic Uncertainty

Future Work

Home Page

Title Page

Page 6 of 35

•

Go Back

Full Screen

Close

6. Positive and Negative Examples (cont-d)

- However, in regression problems, negative examples are usually not used.
- In principle, they provide an additional information about the dependence.
- So it would be beneficial to use them.
- However, they are not used because it is not clear how to use them.
- In this talk, we show how to use negative examples.
- We also show cases when the use of negative examples help.
- In our analysis, we will cover all three major types of uncertainty: interval, fuzzy, and probabilistic.

7. Positive and Negative Examples (cont-d)

- We will assume, for simplicity, that:
 - the x values are known exactly,
 - i.e., to be more precise, that the inaccuracy in x can be safely ignored, but
 - the values of y are known with uncertainty.
- In all three cases, we assume that we know the family of dependencies $y = f(x, c_1, \dots, c_n)$.
- For example, it can be the family of all linear functions or the family of all quadratic functions.
- We want to find:
 - the values $c = (c_1, \ldots, c_n)$ of the parameters
 - for which the corresponding dependence is the best fit with the available data.

Often, We Do Not...

Classification . . .

What We Want: A...

Positive and Negative...

Interval Uncertainty

Negative Intervals Can .
Fuzzy Uncertainty

, , , , , , , ,

Future Work

Home Page

Title Page

Probabilistic Uncertainty

Page 8 of 35

Go Back

Eull Scroon

Full Screen

Close

8. Important Comment: Negative Examples in Education

- A significant part of knowledge is taught by presenting examples $(x^{(k)}, y^{(k)})$:
 - of a problem x and
 - of its correct solution y.
- It is well known that learning can be enhanced if:
 - in addition to correct solutions,
 - students also see example of typical mistakes,
 - i.e., pairs $(x^{(k)}, y^{(k)})$ in which we know that $y^{(k)}$ is not a correct solution.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 9 of 35 Go Back Full Screen Close Quit

9. Regression under Interval Uncertainty: A Brief Reminder

- Following the general simplifying assumption, we consider the case when:
 - the values $x^{(k)}$ are known exactly, but
 - the values $y^{(k)}$ are known with interval uncertainty,
 - i.e., that for each k, we know the interval $[\underline{y}^{(k)}, \overline{y}^{(k)}]$ that contains the actual (unknown) value $\underline{y}^{(k)}$.
- We select the values $c = (c_1, \ldots, c_n)$ for which the following condition is satisfied for all k:

$$\underline{y}^{(k)} \le f\left(x^{(k)}, c_1, \dots, c_n\right) \le \overline{y}^{(k)}, 1 \le k \le K.$$

10. Regression under Interval Uncertainty: Algorithms

- For each i, we want to find the range $[\underline{c}_i, \overline{c}_i]$ of possible values of c_i .
- This range can be obtained by solving the following two constraint optimization problems:
 - to find \underline{c}_i , we minimize c_i under the above constraints; and
 - to find \bar{c}_i , we maximize c_i under the above constraints.
- In the general non-linear case, this problem is NP-hard.
- \bullet Even finding one single combination c that satisfies all the constraints is, in general, NP-hard.
- In such cases, constraint solving algorithms can lead to approximate ranges: e.g., to enclosures $[\underline{c}'_i, \overline{c}'_i] \supseteq [\underline{c}_i, \overline{c}_i]$.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can. Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 11 of 35 Go Back Full Screen Close Quit

11. Interval Regression (cont-d)

• Computing the ranges $[\underline{c}_i, \overline{c}_i]$ becomes feasible if we consider families that linearly depend on c_i :

$$f(x, c_1, \dots, c_n) = f_0(x) + c_1 \cdot f_1(x) + \dots + c_n \cdot f_n(x).$$

• In this case, inequalities become linear inequalities in terms of the unknowns c_i :

$$\underline{y}^{(k)} \le f_0(x) + c_1 \cdot f_1\left(x^{(k)}\right) + \ldots + c_n \cdot f_n\left(x^{(k)}\right) \le \overline{y}^{(k)}.$$

- We can then solve the following two linear programming problems:
 - to find \underline{c}_i , we minimize c_i under the linear constraints; and
 - to find \overline{c}_i , we maximize c_i under the linear constraints.
- There exist feasible algorithms for linear programming, so these problems are feasible.

What We Want: A...
Often, We Do Not...

Classification . . .

Positive and Negative...

Interval Uncertainty

Negative Intervals Can.

Fuzzy Uncertainty
Probabilistic Uncertainty

Future Work

Home Page

Title Page

Page 12 of 35

Go Back

Full Screen

Close

12. What If We Have "Negative" Intervals?

- What if we also have "negative" intervals $(\underline{y}^{(k)}, \overline{y}^{(k)})$, $k = K + 1, \dots, L$ that do *not* contain $y^{(k)}$.
- In this case, we also have an additional condition that must be satisfied for each ℓ from K+1 to L:

$$f\left(x^{(\ell)}, c_1, \dots, c_n\right) \leq \underline{y}^{(\ell)} \text{ or } \overline{y}^{(\ell)} \leq f\left(x^{(\ell)}, c_1, \dots, c_n\right).$$

• The question is to find the values $c = (c_1, \ldots, c_n)$ that satisfy all the constraints.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can. Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page 44 **>>** Page 13 of 35 Go Back Full Screen Close Quit

- Suppose that for a linear model $y = c_1 \cdot x$, we have two observations:
 - for x = -1 and for x = 1,
 - we have $y \in [-1, 1]$.
- One can easily see that in this case, the set of possible values of c_1 is the interval [-1,1].
- In particular, for x = 2, the only information that we can extract from this data is that $y \in [-2, 2]$.
- Now, suppose that we know that for x = 2, the value y cannot be in the interval (-3,2).
- Then the set of possible values of y narrow down to a single value y = 2.
- The set [-1,1] of possible values of c_1 narrows down to a single value $c_1 = 1$.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 14 of 35 Go Back

Full Screen

Close

Quit

With Negative Intervals, Already the Linear Problem Is NP-Hard

- Indeed, it is known that the following problem is NPhard:
 - given natural numbers s_1, \ldots, s_n and s_n
 - find a subset of the values s_i that adds up to s.
- In other words, we need to find the values $c_i \in \{0,1\}$ (describing whether to take the s_i or not) for which

$$\sum_{i=1}^{n} c_i \cdot s_i = s.$$

- This problem can be easily reformulated as an interval problem with positive and negative examples.
- For this purpose, we take a linear model

$$y = c_1 \cdot x_1 + \ldots + c_n \cdot x_n.$$

Often, We Do Not . . .

What We Want: A...

Classification . . .

Positive and Negative . .

Interval Uncertainty

Negative Intervals Can Fuzzy Uncertainty

Probabilistic Uncertainty

Future Work

Home Page

Title Page

Page 15 of 35

Go Back

Full Screen

Close

15. NP-Hard for Negative Intervals (cont-d)

- We take the following examples.
- A positive example: $x_i = s_i$ for all i and $y \in [s, s]$.
- Consistency with this example means $s = \sum_{i=1}^{n} c_i \cdot s_i$.
- n additional positive examples; in the i-th example:
 - we have $x_i = 1$, $x_j = 0$ for all $j \neq i$, and
 - we have $y \in [0, 1]$.
- Consistency with each such example means $c_i \in [0, 1]$.
- n negative examples; in the i-th example:
 - we have $x_i = 1$, $x_j = 0$ for all $j \neq i$, and
 - we have $y \notin (0,1)$.
- Consistency with each such example means $c_i \notin (0,1)$, so $c_i \in \{0,1\}$.

What We Want: A...

Often, We Do Not...

Classification . . .

Positive and Negative...

Interval Uncertainty

Negative Intervals Can .
Fuzzy Uncertainty

Probabilistic Uncertainty

Future Work

Home Page

Title Page

Page 16 of 35

Go Back

F # 6

Full Screen

Close

16. So What Do We Do: First Idea

- NP-hard implies that:
 - unless P = NP (which most computer scientists believe to be impossible),
 - no feasible algorithm is possible that would always compute the exact ranges for c_i ,
 - or even check whether the data is consistent with the model.
- So what do we do?
- Each negative interval $(\underline{y}^{(\ell)}, \overline{y}^{(\ell)})$ means that the actual value of $y^{(\ell)}$ is:
 - either in the interval $(-\infty, y^{(\ell)}]$,
 - or in the interval $\left[\overline{y}^{(\ell)},\infty\right)$.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 17 of 35 Go Back Full Screen Close Quit

17. First Idea (cont-d)

- Thus, we can:
 - add, to K positive intervals, the first of these two semi-infinite intervals, and
 - solve the corresponding linear programming problem, and get ranges $\left[\underline{c}_{i}^{(\ell),-}, \overline{c}_{i}^{(\ell),-}\right]$ for c_{i} ;
 - we can also add, to K positive intervals, the second of these two semi-infinite intervals, and
 - solve the corresponding linear programming problem, and get ranges $\left[\underline{c}_{i}^{(\ell),+}, \overline{c}_{i}^{(\ell),+}\right]$ for c_{i} .
- The actual value $y^{(\ell)}$ is either in the first or in the second of the semi-infinite intervals.
- So, the actual range of possible values of each c_i belongs to the *union* of the two intervals:

$$\left[\underline{c}_i^{(\ell)}, \overline{c}_i^{(\ell)}\right] = \left[\underline{c}_i^{(\ell), -}, \underline{c}_i^{(\ell), -}\right] \bigcup \left[\underline{c}_i^{(\ell), +}, \overline{c}_i^{(\ell), +}\right].$$

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 18 of 35 Go Back Full Screen Close

Quit

First Idea (cont-d)

• So, we take:

$$\underline{c}_i^{(\ell)} = \min\left(\underline{c}_i^{(\ell),-},\underline{c}_i^{(\ell),+}\right) \text{ and } \overline{c}_i^{(\ell)} = \max\left(\overline{c}_i^{(\ell),-},\overline{c}_i^{(\ell),+}\right).$$

- The actual value c_i belongs to all these intervals.
- So we can conclude that it belongs to the intersection $[\underline{c}_i, \overline{c}_i]$ of all these intervals:

$$[\underline{c}_i, \overline{c}_i] = \bigcap_{\ell=K+1}^L \left[\underline{c}_i^{(\ell)}, \overline{c}_i^{(\ell)}\right], \text{ i.e., we take}$$

$$\underline{c}_i = \max_{\ell} \underline{c}_i^{(\ell)} \text{ and } \overline{c}_i = \min_{\ell} \overline{c}_i^{(\ell)}.$$

• If this intersection is empty, this means that the model is inconsistent with observations.

What We Want: A... Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page

>>

Page 19 of 35

Go Back

Full Screen

Close

19. Second Idea

- In the above idea, every time, we only take into account one negative example.
- \bullet Instead, we can take into account two negative examples.
- Then, for each pair (ℓ, ℓ') of negative examples, we have four possible cases:
 - we can have the case a=-- when $y^{\ell}\in\left(-\infty,\underline{y}^{(\ell)}\right]$ and $y^{\ell'}\in\left(-\infty,\underline{y}^{(\ell')}\right]$;
 - we can have the case a = -+ when $y^{\ell} \in (-\infty, \underline{y}^{(\ell)}]$ and $y^{\ell'} \in [\overline{y}^{(\ell')}, \infty);$
 - we can have the case a = +- when $y^{\ell} \in [\overline{y}^{(\ell)}, \infty)$ and $y^{\ell'} \in (-\infty, y^{(\ell')}]$; and
 - we can have the case a = ++ when $y^{\ell} \in [\overline{y}^{(\ell)}, \infty)$ and $y^{\ell'} \in [\overline{y}^{(\ell')}, \infty)$.

What We Want: A... Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can. Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 20 of 35

Go Back

Full Screen

Close

20. Second Idea (cont-d)

- For each of these four cases a = --, -+, +-, ++, we:
 - add the corresponding two semi-infinite intervals to K positive intervals, and
 - find the ranges $\left[\underline{c}_i^{(\ell,\ell'),a}, \overline{c}_i^{(\ell,\ell'),a}\right]$ for c_i .
- Then, we can conclude that the actual value of c_i belongs to the union of these four intervals:

$$\begin{split} \left[\underline{c}_i^{(\ell,\ell')}, \overline{c}_i^{(\ell,\ell')}\right] &= \bigcup_a \left[\underline{c}_i^{(\ell,\ell'),a}, \underline{c}_i^{(\ell,\ell'),a}\right], \text{ i.e., we take} \\ \underline{c}_i^{(\ell,\ell')} &= \min_a \underline{c}_i^{(\ell,\ell'),a} \text{ and } \overline{c}_i^{(\ell,\ell')} = \max_a \overline{c}_i^{(\ell,\ell'),a}. \end{split}$$

- The actual value c_i belongs to *all* these intervals.
- So, we can conclude that it belongs to the intersection $[\underline{c}_i, \overline{c}_i]$ of all these intervals:

$$[\underline{c}_i, \overline{c}_i] = \bigcap_{K+1 \le \ell, \ell' \le L} \left[\underline{c}_i^{(\ell,\ell')}, \overline{c}_i^{(\ell,\ell')}\right].$$

Often, We Do Not...

What We Want: A...

Classification . . .

Positive and Negative...

Interval Uncertainty

Negative Intervals Can...

Fuzzy Uncertainty

Probabilistic Uncertainty

Future Work

Home Page

Title Page

Page 21 of 35

Go Back

Full Screen

Close

21. Second Idea (cont-d)

• So, we take

$$\underline{c}_i = \max_{\ell,\ell'} \underline{c}_i^{(\ell,\ell')} \text{ and } \overline{c}_i = \min_{\ell,\ell'} \overline{c}_i^{(\ell,\ell')}.$$

- In this method, we get, in general, a better range with smaller excess width.
- However, now, instead of considering O(L-K) cases, we need to consider $O((L-K)^2)$ cases.
- We can get even more accurate estimates for the range if we consider:
 - all possible triples of negative intervals,
 - all possible 4-tuples of negative intervals, etc.
- However, then we will need to consider $O((L-K)^3)$, $O((L-K)^4)$, etc. cases.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 22 of 35 Go Back Full Screen Close Quit

22. What Is Fuzzy Uncertainty: A Brief Reminder

- \bullet In some cases, the values y are not measured but evaluated by an expert.
- An expert can say something like "the value of y is close to 1.5".
- To formalize such imprecise ("fuzzy") knowledge, Lotfi Zadeh invented special techniques that he called fuzzy.
- In these techniques, for each imprecise expert statement about a quantity, we ask an expert:
 - to estimate, on a scale from 0 to 1,
 - his/her degree of confidence that the expert's statement holds: e.g., that 1.7 is close to 1.5.
- The function that assigns this degree to each possible value is called a *membership function*.

23. Fuzzy Uncertainty (cont-d)

- Here:
 - once we know the degrees of confidence a, b, \ldots in individual statements A, B, \ldots ,
 - we can estimate degrees of confidence in composite statements such as A & B, $A \lor B$, etc.
- The algorithms $f_{\&}(a,b)$ and $f_{\lor}(a,b)$ for such estimates are called:
 - "and" and "or" operations,
 - or, for historical reasons, t-norms and t-conorms.
- For example, the most widely used "and"-operations are $\min(a, b)$ and $a \cdot b$.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can. Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 24 of 35 Go Back Full Screen Close Quit

- As usual, we know the $x^{(k)}$ exactly, and we know $y^{(k)}$ with fuzzy uncertainty.
- So, for each value y, we know our degree of confidence $\mu_k(y)$ that y is possible.
- is consistent with the k-th observation is equal to

$$\mu_k\left(f\left(x^{(k)},c_1,\ldots,c_n\right)\right).$$

• In this case, the degree to which a model $y = f(x, c_1, \dots, c_n)$

• The degree to which a model is consistent with all K observations is equal to

$$f_{\&}\left(\mu_{1}\left(f\left(x^{(1)},c\right)\right),\ldots,\mu_{K}\left(f\left(x^{(K)},c\right)\right)\right).$$

• A natural idea is to select the values $c = (c_1, \ldots, c_n)$ for which this degree is the largest possible.

Often, We Do Not . . .

What We Want: A...

Classification . . .

Positive and Negative...

Interval Uncertainty

Negative Intervals Can. Fuzzy Uncertainty

Probabilistic Uncertainty

Future Work Home Page

Title Page

>>

Page 25 of 35

Go Back

Full Screen

Close

25. What If We Have Negative Examples?

- Suppose now that:
 - in addition to K positive examples,
 - we also have L K negative examples, for which we know that the expert's estimate is wrong.
- In fuzzy logic:
 - the degree to which a statement is wrong is usually estimated as
 - one minus the degree to which this statement is true.
- So, for a negative example, the degree to which this example is consistent with the model is equal to

$$1 - \mu_{\ell} \left(f \left(x^{(k)}, c_1, \dots, c_n \right) \right).$$

• Thus, we should select a model for which the following degree takes the largest possible value:

$$f_{\&}\left(\mu_{1}\left(f\left(x^{(1)},c\right)\right),\ldots,\mu_{K}\left(f\left(x^{(K)},c\right)\right),$$

$$1-\mu_{K+1}\left(f\left(x^{(K+1)},c\right)\right),\ldots,1-\mu_{L}\left(f\left(x^{(L)},c\right)\right)\right).$$

What We Want: A... Often, We Do Not . . . Classification . . . Positive and Negative... Interval Uncertainty Negative Intervals Can. Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page 44 **>>** Page 27 of 35 Go Back Full Screen Close Quit

27. Regression under Probabilistic Uncertainty: A Brief Reminder

- Probabilistic uncertainty means that for each measurement k, we know the probabilities of different y's.
- In other words, we know, e.g., the probability density function $\rho_k(y)$ describing these probabilities.
- So, the probability that a model $y = f(x, c_1, \dots, c_n)$ is consistent with the k-th observation is proportional to:

$$\rho_k\left(f\left(x^{(k)},c_1,\ldots,c_n\right)\right).$$

28. Probabilistic Uncertainty (cont-d)

- It is usually assumed that different measurements are independent.
- Thus, the probability that a model is consistent with all *K* observations is equal to the product:

$$\prod_{k=1}^{K} \rho_k \left(f\left(x^{(k)}, c_1, \dots, c_n\right) \right).$$

- A natural idea is to select the values c_1, \ldots, c_n for which this probability is the largest possible.
- This is known as the Maximum Likelihood method.

29. What If We Have Negative Examples?

- From the purely probabilistic viewpoint, it is not clear how to handle such situations.
- However, we have a solution for the fuzzy case.
- So, we can use the fact emphasized many times by Zadeh that:
 - the main difference between a membership function $\mu(y)$ and a probability density function $\rho(y)$
 - is in normalization.
- A membership function has $\max_{y} \mu(y) = 1$.
- The probability density function is selected so that the overall probability is 1, i.e., that $\int \rho(y) dy = 1$.

- If we have a membership function, then:
 - by multiplying it by an appropriate constant,
 - we can get a probability density function.
- If we have a probability density function $\rho(y)$, then:
 - by dividing it by $m = \max_{y'} \rho(y')$,
 - we will get a membership function.
- So, a natural idea is to convert the original probabilistic knowledge $\rho_k(y)$ into fuzzy one:

$$\mu_k(y) = c_k^{-1} \cdot \rho_k(y)$$
, where $c_k \stackrel{\text{def}}{=} \max_{y'} \rho_k(y')$.

- In this case, the fuzzy approach to regression will lead us to maximize the above expression.
- We want the probability-to-fuzzy translation to be consistent with the Maximum Likelihood approach.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 31 of 35 Go Back Full Screen Close Quit

- Thus, we need to select $f_{\&}(a,b) = a \cdot b$.
- In this case, the above expression takes the form

$$\prod_{k=1}^{K} \mu_k \left(f\left(x^{(k)}, c_1, \dots, c_n\right) \right) =$$

$$\left(\prod_{k=1}^k c_k^{-1}\right) \cdot \left(\prod_{k=1}^K \rho_k \left(f\left(x^{(k)}, c_1, \dots, c_n\right)\right)\right).$$

- This expression differs from likelihood only by a multiplicative constant.
- So, maximizing this expression is indeed equivalent to the Maximum Likelihood approach.

Often, We Do Not . . . Classification . . . Positive and Negative . . Interval Uncertainty Negative Intervals Can. Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 32 of 35 Go Back Full Screen Close Quit

• Now it is easy to take into account negative examples: we just maximize the product

$$\prod_{k=1}^{K} \mu_k \left(f\left(x^{(k)}, c\right) \right) \cdot \prod_{\ell=K+1}^{L} \left(1 - \mu_\ell \left(f\left(x^{(\ell)}, c\right) \right) \right),$$

where
$$\mu_k(y) \stackrel{\text{def}}{=} \frac{\rho_k(y)}{\max_{y'} \rho_k(y')}$$
.

• It is easy to see that maximizing this expression is equivalent to minimizing a simpler expression

$$\prod_{k=1}^{K} \rho_k \left(f\left(x^{(k)}, c\right) \right) \cdot \prod_{\ell=K+1}^{L} \left(1 - \mu_\ell \left(f\left(x^{(\ell)}, c\right) \right) \right).$$

What We Want: A... Often, We Do Not . . . Classification . . . Positive and Negative... Interval Uncertainty Negative Intervals Can Fuzzy Uncertainty Probabilistic Uncertainty Future Work Home Page Title Page **>>** Page 33 of 35 Go Back Full Screen Close Quit

33. Future Work

- In this talk, we provided a theoretical foundation for using negative examples in regression-like problems.
- We also showed, on simplified examples, that the resulting algorithms lead to more accurate models.
- Now we plan to apply the resulting algorithms and ideas to real-life problems.
- We hope that others will join us in this effort.

34. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).

