Introduction to Fuzzy Logic

Vladik Kreinovich

Department of Computer Science University of Texas at El Paso 500 W. University El Paso, Texas 79968, USA vladik@utep.edu http://www.cs.utep.edu/vladik

1. Need for Expert Knowledge

- In some cases, we have a precise knowledge e.g., an autopilot perfectly pilots a plane.
- In many other cases, we have to rely on expert knowledge.
- So far, computer-based systems have not (yet) replaced skilled medical doctors or even skilled drivers.
- In the ideal world, everyone should go to the best doctor.
- However, in real life, this is not possible.
- It is therefore desirable to have a computer-based tool that contains the knowledge of the best doctors.
- Such tool will help all other doctors make good decisions.

2. Need to Describe Imprecise (Fuzzy) Knowledge

- Many doctors (and experts in general) are absolutely willing to share their knowledge.
- Challenge: this knowledge is often described in terms of imprecise ("fuzzy") words from natural language.
- A medical doctor can say "if a patient has high fever" or "if a skin mole has an irregular shape".
- A driver cannot say with what force to hit the brakes if the car 10 m in front slows down from 100 to 90 km/h.
- He/she will say "brake a little bit".
- We thus need to translate these fuzzy words into computerunderstandable language. about the object we can use.
- This is what Zadeh's fuzzy logic is about.

3. Toy Example: a Thermostat

- To illustrate the main idea of fuzzy logic, let us consider a simplified thermostat with a dial.
- Turning the dial to the *left* makes it *cooler*.
- Turning it to the *right* makes it *warmer*.
- We want to reach a comfort temperature T_0 .
- In other words, we want the difference $x = T T_0$ to be 0.
- We need to describe, for each x, to which angle u we turn the dial: u = f(x).

4. Thermostat: Rules

- For such an easy system, we do not need any expert to formulate reasonable rules.
- We can immediately describe several reasonable control rules.
- If the room is comfortable, no control is needed.
- So, if the difference $x = T T_0$ is negligible, then the control u should also be negligible.
- If the room is slightly overheated, cool it a little bit.
- So, if x is positive and small, u must be negative and small.
- If the temperature is a little lower than we would like it to be, then we need to heat the room a little bit.
- In other terms, if x is small negative, then u must be small positive.

5. Thermostat: Rules (cont-d)

- We can formulate many similar natural rules.
- For simplicity, we will restrict ourselves to the above three:
 - if x is negligible, then u must be negligible;
 - if x is small positive, then u must be small negative;
 - if x is small negative, then u must be small positive.

6. Rules: General Case

- Let us denote "negligible" by N, "small positive" by SP, and "small negative" by SN.
- Then, the rules take the following form:

$$N(x) \Rightarrow N(u); SP(x) \Rightarrow SN(u); SN(x) \Rightarrow SP(u).$$

• In general, the expert's knowledge about the dependence of y on x_1, \ldots, x_n can be expressed by rules:

If x_1 is A_{r1} , ..., and x_n is A_{rn} , then y is B_r .

- Here, A_{ri} and B_r are words from natural language like "small", "medium", "large", "approximately 1".
- These rules have the form

$$A_{r1}(x_1) \& \ldots \& A_{rn}(x_n) \Rightarrow B_r(y).$$

Need to Describe . . Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . Home Page Title Page **>>** Page 7 of 31 Go Back Full Screen Close Quit

Need for Expert . . .

7. Step-by-Step Translation of These Rules

- Our goal is to represent rule bases in precise terms.
- A rule base has a clear structure.
- A rule base consists of rules.
- Each rule, in its turn, is obtained:
 - from properties (expressed by words from natural language)
 - by using logical connectives.
- In view of this structure, it is reasonable to represent the rule base:
 - by first representing the basic elements of the rule base, and then
 - by extending this representation to the rule base as a whole.

8. Step-by-Step Translation (cont-d)

- So, first, we represent the properties $A_{ri}(x_i)$ and $B_r(y)$.
- Second, we represent the logical connectives.
- Third, we use logical connectives to represent each rule.
- Fourth, we combine the representations of different rules into a representation of a rule base.
- As a result of these four steps, we get an advising (expert) system.
- For example, if we apply these four steps to the medical knowledge, we ideally, get a system that
 - given the patient's symptoms,
 - provides the diagnostic and medical advice.

9. Step-by-Step Translation (cont-d)

- For example, it can say that most probably, the patient has a flu, but it is also possible that he has bronchitis.
- Such an advice, coming from an expert system, is usually used by a specialist to make a decision.
- However, there are situations like automatic control where there is no time to involve a human operator.
- For such control situations, we need an *additional*, fifth follow-up step: making a decision.
- Let us describe all five steps.

10. First Step: Representing Natural-language Properties

- For properties A like "small", for some values x, we are not 100% sure whether this value is small or not.
- A natural idea is to ask the expert to mark, on a scale from 0 to 1, to what extend the given value x is small.
- We can use another scale e.g., 0 to 10 and then divide by 10.
- As a result, for several values x_i , we get a degree $A(x_i)$ to which x_i satisfies the property A.
- Some experts are not comfortable marking this value.
- Then, we poll the experts and take $A(x_i) = m/n$ if m out of n consider x_i to be, e.g., small.

Need to Describe... Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . Home Page Title Page **>>** Page 11 of 31 Go Back Full Screen Close Quit

Need for Expert . . .

11. Need for Interpolation

- To get the values A(x) for all other x, we use interpolation.
- ullet The resulting function is called a *membership function* or a fuzzy set.
- The simplest is linear interpolation.
- Let us consider the word "negligible".
- The only case when we are 100% sure that x is negligible is when x = 0.
- So, we have N(0) = 1.
- Usually, we also know the value $\Delta > 0$ after which the difference in temperatures is no longer negligible.
- For example, for a thermostat that controls the room's temperature, we can take $\Delta = 10F$.

Need for Expert . . . Need to Describe... Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . Home Page Title Page **>>** Page 12 of 31 Go Back Full Screen Close Quit

12. Interpolation (cont-d)

- This means that N(x) = 0 for $x \ge \Delta$ and for $x < -\Delta$.
- We know the value of the function N(x) for $x \leq -\Delta$, for x = 0, and for $x \geq \Delta$.
- For $x \in (-\Delta, 0)$, we get the expression

$$N(x) = 1 + \frac{x}{\Lambda}.$$

- For $x \in (0, \Delta)$, we get the expression $N(x) = 1 \frac{x}{\Delta}$.
- The graph of N(x) is a triangle.
- Such functions are called *triangular*.

Need to Describe . . Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . Home Page Title Page **>>** Page 13 of 31 Go Back Full Screen Close Quit

Need for Expert . . .

13. Need to Combine Fuzzy Degrees

- Conclusions based on expert knowledge often take into account *several* expert statements.
- Our degree of confidence in such a conclusion is thus equal to our degree of confidence that:
 - the first of used statements is true and
 - the second used statement is true, etc.
- In other words,
 - in addition to the expert's degrees of confidence in their statements S_1, \ldots, S_n ,
 - we also need to estimate the degrees of confidence in "and"-combinations $S_i \& S_j$, $S_i \& S_j \& S_k$, etc.
- In the ideal world, we can ask the experts to estimate the degree of confidence in each such combination.
- However, this is not realistically possible.

14. Need to Combine (cont-d)

- Problem: for n original statements, there are $2^n 1$ such combinations.
- Indeed, combinations are in 1-1 correspondence with non-empty subsets of the set of n statements.
- Already for reasonable n = 30, we get an astronomical number $2^{30} \approx 10^9$ combinations.
- There is no way that we can ask a billion questions to the experts.
- We cannot elicit the expert's degree of confidence in "and"-combinations directly from the experts.
- So, we need to estimate these degrees based on the experts' degrees of confidence in each statement S_i .

15. Need to Combine (cont-d)

- In other words, we need to be able:
 - to combine the degrees of confidence a and b of statements A and B
 - into an estimate for degree of confidence in the "and"-combination A & B.
- The algorithm for such combination is called an "and"-operation or, for historical reasons, a t-norm.
- The result of applying this combination algorithm to numbers a and b will be denoted $f_{\&}(a,b)$.

16. How to Combine Fuzzy Degrees?

- Which operation $f_{\&}(a,b)$ should we choose?
- First, since A & B means the same as B & A, it is reasonable to require that the resulting estimates coincide:

$$f_{\&}(a,b) = f_{\&}(b,a).$$

• Since A & (B & C) means the same as(A & B) & C, we must have

$$f_{\&}(a, f_{\&}(b, c)) = f_{\&}(f_{\&}(a, b), c).$$

• Since A & B is a stronger statement than each of A and B (it implies both A and B),

$$f_{\&}(a,b) \leq a \text{ and } f_{\&}(a,b) \leq b.$$

Need for Expert . . . Need to Describe... Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . Home Page Title Page **>>** Page 17 of 31 Go Back Full Screen Close Quit

How to Combine Fuzzy Degrees (cont-d)

- Finally:
 - if our degree of confidence in one or both of the statements A and B increases,
 - the resulting degree of confidence in A & B should also increase – or at least remain the same:

if
$$a \leq a'$$
 and $b \leq b'$, then $f_{\&}(a,b) \leq f_{\&}(a',b')$.

- There are many such operations: $\min(a, b)$, $a \cdot b$, etc.
- We need to select the one that best represents human reasoning in a given knowledge domain.
- We can also require that since A & A means the same as A, it is reasonable to require that $f_{\&}(a,a) = a$.
- Then, the only possible t-norm is min(a, b).
- Similarly, we can define "or"-operations (aka t-conorms).

Need to Describe . . . Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . Home Page Title Page Page 18 of 31

>>

Go Back

Full Screen

Close

Quit

Need for Expert . . .

18. Historical Comment

- Historically the first determination of "and"-operation was done at Stanford.
- Researchers designed an expert system MYCIN for diagnosing rare blood diseases.
- The results were good, so they thought that they have discovered general laws of human reasoning.
- However, when they applied the same laws to geophysics, they failed.

19. Historical Comment (cont-d)

- Indeed, reasoning is different in these two areas.
- In medicine, we need to be absolutely sure before we recommend, e.g., surgery else we hurt the patient.
- In geophysics, if there is a good chance to find oil, we start digging.
- If we wait until we are absolutely sure, competitors will be there first.
- So, now we know that in different domains, different t-norms are needed.

20. Back to Fuzzy Rules and Toy Example

• Let us go back to our rules

$$N(x) \Rightarrow N(u); \quad SP(x) \Rightarrow SN(u); \quad SN(x) \Rightarrow SP(u).$$

- For each input x, the control u is reasonable R(x, u) if one of the rules if applicable:
 - either the 1st rule is applicable, so N(x) and N(u),
 - or the 2nd rule is applicable, so SP(x) and SN(u),
 - or the 3rd rule is applicable, so SN(x) and SP(u):

$$R(x,u) \Leftrightarrow (N(x) \& N(u)) \lor (SP(x) \& SN(u)) \lor (SN(x) \& SP(u)).$$

- From experts, we get the values N(x), N(u), etc.
- Based on experts, we select "and"- and "or"-operations.
- Thus, for each x and u, we get R(x, u) as

$$f_{\vee}(f_{\&}(N(x),N(u)),f_{\&}(SP(x),SN(u)),f_{\&}(SN(x),SP(u))).$$

Need to Describe . . .

Rules: General Case

Step-by-Step...

First Step: . . .

Need for Interpolation

Need to Combine . . .

Defuzzification

Fuzzy Computations: . . .

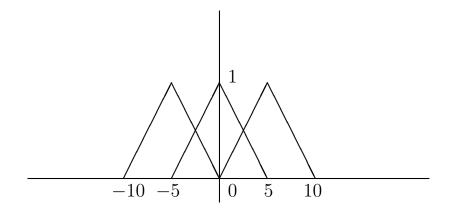
Home Page
Title Page

>>

1

Page 21 of 31

Go Back


Full Screen

Close

Quit

21. Numerical Example

- Let us assume that all three membership functions are piece-wise linear.
- Specifically, let us assume that they are described by the following graph:

Need for Expert . . . Need to Describe . . . Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . . Home Page Title Page Page 22 of 31 Go Back Full Screen Close Quit

22. Numerical Example (cont-d)

- What is the degree of confidence $\mu_C(4, -2)$ that for $x = 4^{\circ}$ the control $u = -2^{\circ}$ is reasonable?
- According to our formulas, let us first compute the values of the membership functions.
- By linear interpolation, we can find the analytical formulas for these membership functions:
- The term "negligible" is described by the following formulas:
 - $\mu_N(x) = 1 + x/5 \text{ for } -5 \le x \le 0;$
 - $\mu_N(x) = 1 x/5 \text{ for } 0 \le x \le 5;$
 - $\mu_N(x) = 0$ for all other x.

Need for Expert . . . Need to Describe... Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . Home Page Title Page **>>** Page 23 of 31 Go Back Full Screen Close Quit

23. Numerical Example (cont-d)

- The term "small positive" is described by the following formulas:
 - $\mu_{SP}(x) = x/5 \text{ for } 0 \le x \le 5;$
 - $\mu_{SP}(x) = 2 x/5$ for $5 \le x \le 10$;
 - $\mu_{SP}(x) = 0$ for all other x.
- The term "small negative" is described by the following formulas:
 - $\mu_{SN}(x) = 2 + x/5 \text{ for } -10 \le x \le -5;$
 - $\mu_{SN}(x) = -x/5 \text{ for } -5 \le x \le 0;$
 - $\mu_{SN}(x) = 0$ for all other x.

Need to Describe . . .

Rules: General Case

Step-by-Step...
First Step:...

Need for Interpolation

Need to Combine . . .

Defuzzification

Fuzzy Computations: . . .

Home Page

Title Page

←

←

Page 24 of 31

Go Back

Full Screen

Close

Quit

24. Numerical Example (cont-d)

• If we use $f_{\&}(a,b) = \min(a,b)$ and $f_{\lor}(a,b) = \max(a,b)$, then we get $\mu_{C}(4,-2) = \max(d_{1},d_{2},d_{3})$, where

$$d_1 = \min(\mu_N(4), \mu_N(-2)); d_2 = \min(\mu_{SP}(4), \mu_{SN}(-2));$$

$$d_3 = \min(\mu_{SN}(4), \mu_{SP}(-2)).$$

- Here, $\mu_N(4) = 0.2$, $\mu_N(-2) = 0.6$, $\mu_S P(4) = 0.8$, $\mu_{SN}(-2) = 0.4$, and $\mu_{SN}(4) = \mu_{SP}(-2) = 0$.
- Hence, $d_1 = \min(0.2, 0.6) = 0.2$, $d_2 = \min(0.8, 0.4) = 0.4$, $d_3 = \min(0, 0) = 0$, and

$$\mu_C(4, -2) = \max(0.2, 0.4, 0) = 0.4.$$

Need to Describe . . Rules: General Case Step-by-Step... First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . Home Page Title Page **>>** Page 25 of 31 Go Back Full Screen Close Quit

Need for Expert...

25. Defuzzification

- For each x and for each u, we get a degree $\mu(u) = R(x, u)$ to which u is reasonable.
- In other words, we get a fuzzy set of possible controls.
- For automatic control, we need to "defuzzify" this into a single value \overline{u} .
- For each expert's opinion u, we wan to have $\overline{u} u \approx 0$.
- The vector formed by the differences should be as close to 0 as possible, so we minimize $\sum (\overline{u} u)^2$.

26. Defuzzification (cont-d)

- For each u, the degree $\mu(u)$ is proportional to the number of experts who believe that u is reasonable.
- So, the minimized sum becomes $\sim \sum_{u} \mu(u) \cdot (\overline{u} u)^2$, i.e., $\int (\overline{u} u) \cdot \mu(u) du$.
- To minimize this expression, we differentiate it relative to \overline{u} and equate the result to 0; thus

$$\overline{u} = \frac{\int u \cdot \mu(u) \, du}{\int \mu(u) \, du}.$$

- This is known as *centroid defuzzification*.
- The resulting *fuzzy control* has indeed been very successful in many applications, from rice cookers to trains.

is small, and \dots , then y is small":

$$A_{r1}(x_1) \& \ldots \& A_{rn}(x_n) \Rightarrow B_r(y).$$

- Here x_1, \ldots, x_n are inputs, and A_{ri} and B_r are words that describe properties of inputs and output.
- For each words w used in these rules, we pick several values $x^{(1)}, \ldots, x^{(k)}$.
- We determine the degrees of confidence $\mu_w(x^{(1)}), \ldots, \mu_w(x^{(n)})$ that these values satisfy the property w.
- Then, we use some interpolation technique to determine the membership functions $\mu_w(x)$ for all x.
- We choose "and"- and "or"-operations $f_{\&}(a,b)$ and $f_{\lor}(a,b)$.

Need for Expert...

Need to Describe...

Rules: General Case

Step-by-Step . . .

First Step: . . .

Need for Interpolation

Need to Combine . . .

Defuzzification

Fuzzy Computations: . .

Home Page

Title Page

→

Page 28 of 31

Go Back

Full Screen

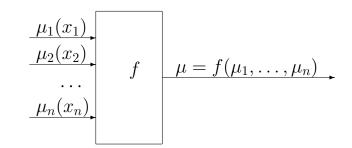
Close

Quit

• For each rule r, and for each possible values of input and output, we compute the *firing degrees*

$$d_r(x_1,\ldots,x_n,y) = f_{\&}(\mu_{r1}(x_1),\ldots,\mu_{rn}(x_n),\mu_r(y)).$$

• Then we compute the membership function for control


$$\mu_C(x_1,\ldots,x_n,y) = f_{\vee}(d_1(x_1,\ldots,x_n,y),\ldots,d_R(x_1,\ldots,x_n,y)).$$

- For every input x_1, \ldots, x_n , $\mu_C(y)$ is the degree of confidence that y is a reasonable control.
 - If needed, we can then get a single recommended control value \bar{y} :

$$\bar{y} = \frac{\int y \cdot \mu_C(y) \, dy}{\int \mu_C(y) \, dy}.$$

Need for Expert . . . Need to Describe . . Rules: General Case Step-by-Step . . . First Step: . . . Need for Interpolation Need to Combine . . . Defuzzification Fuzzy Computations: . . . Home Page Title Page **>>** Page 29 of 31 Go Back Full Screen Close Quit

29. Fuzzy Computations: A Problem

- Given: an algorithm $y = f(x_1, ..., x_n)$ and n fuzzy numbers $\mu_i(x_i)$.
- Compute: $\mu(y) = \max_{x_1, \dots, x_n : f(x_1, \dots, x_n) = y} \min(\mu_1(x_1), \dots, \mu_n(x_n)).$
- Motivation: y is a possible value of $Y \leftrightarrow \exists x_1, \ldots, x_n$ s.t. each x_i is a possible value of X_i and $f(x_1, \ldots, x_n) = y$.
- Details: "and" is min, \exists ("or") is max, hence $\mu(y) = \max_{x_1,\dots,x_n} \min(\mu_1(x_1),\dots,\mu_n(x_n),t(f(x_1,\dots,x_n)=y)).$

Need for Expert...

Need to Describe . . .
Rules: General Case

Step-by-Step...

First Step: . . .

Need for Interpolation

Need to Combine...

Defuzzification

Fuzzy Computations: . .

Home Page

Title Page

4 >>

4

Page 30 of 31

Go Back

Full Screen

Close

Close Quit

30. Fuzzy Computations: Reduction to Interval Computations

- Problem (reminder):
 - Given: an algorithm $y = f(x_1, ..., x_n)$ and n fuzzy numbers X_i described by membership functions $\mu_i(x_i)$.
 - Compute: $Y = f(X_1, ..., X_n)$, where Y is defined by Zadeh's extension principle:

$$\mu(y) = \max_{x_1,\dots,x_n:f(x_1,\dots,x_n)=y} \min(\mu_1(x_1),\dots,\mu_n(x_n)).$$

• *Idea*: represent each X_i by its α -cuts

$$X_i(\alpha) = \{x_i : \mu_i(x_i) \ge \alpha\}.$$

• Advantage: for continuous f, for every α , we have

$$Y(\alpha) = f(X_1(\alpha), \dots, X_n(\alpha)).$$

• Resulting algorithm: for $\alpha = 0, 0.1, 0.2, ..., 1$ apply interval computations techniques to compute $Y(\alpha)$.

Need for Expert...
Need to Describe...
Rules: General Case
Step-by-Step...
First Step:...
Need for Interpolation
Need to Combine...
Defuzzification
Fuzzy Computations:..

Home Page

Title Page

Page 31 of 31

Go Back

Full Screen

Close

Quit