Estimating Information Amount under Uncertainty: Algorithmic Solvability and Computational Complexity

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
vladik@cs.utep.edu
http://www.cs.utep.edu/vladik

interval computations website http://www.cs.utep.edu/interval-comp

1. Types of Uncertainty: In Brief

- Problem: measurement result (estimate) \widetilde{x} differs from the actual value x.
- Probabilistic uncertainty: we know which values of $\Delta x = \tilde{x} x$ are possible; we also know the frequency of each value, i.e., we know $F(t) \stackrel{\text{def}}{=} Prob(x \leq t)$.
- Interval uncertainty: we only know the upper bound Δ on $|\Delta x|$; then, $x \in [\widetilde{x} \Delta, \widetilde{x} + \Delta]$.
- p-boxes: for every t, we only know the interval $[\underline{F}(t), \overline{F}(t)]$ containing F(t).
- Fuzzy uncertainty: we may also have expert estimates that provide better bounds Δx and on F(t) with limited confidence.
- A nested family of intervals corresponding to different levels of certainty forms a fuzzy number.

2. Need to Compare Different Types of Uncertainty

- *Problem.* Often, there is a need to compare different types of uncertainty.
- Example: we have two sensors:
 - one with a smaller bound on a systematic (interval)
 component of the measurement error,
 - the other with the smaller bound on the standard deviation of the random component of the measurement error.
- Question: if we can only afford one of these sensors, which one should we buy?
- Question: which of the two sensors brings us more information about the measured signal?
- *Problem:* to gauge the amount of information.

3. Traditional Amount of Information: Brief Reminder

- Shannon's idea: (average) number of "yes"-"no" (binary) questions that we need to ask to determine the object.
- Fact: after q binary questions, we have 2^q possible results.
- Discrete case: if we have n alternatives, we need q questions, where $2^q \ge n$, i.e., $q \sim \log_2(n)$.
- Discrete probability distribution: $q = -\sum p_i \cdot \log_2(p_i)$.
- Continuous case definition: number of questions to find an object with a given accuracy ε .
- Interval uncertainty: if $x \in [a, b]$, then $q \sim S \log_2(\varepsilon)$, with $S = \log_2(b a)$.
- Probabilistic uncertainty: $S = -\int \rho(x) \cdot \log_2 \rho(x) dx$.

4. How to Extend These Formulas to p-Boxes etc.

- *Problem:* extend the formulas for information to more general uncertainty.
- Axiomatic approach (Klir et al.) idea:
 - find properties of information;
 - look for generalizations that satisfy as many of these properties as possible.
- *Problem:* sometimes, there are several possible generalizations.
- Which generalization should we choose?
- Natural idea: define information as the worst-case average number of questions.

5. Shannon's Derivation: Reminder

- Situation: we know the probabilities p_1, \ldots, p_n of different alternatives.
- \bullet We repeat the selection N times.
- Let N_i be number of times when we get A_i .
- For big N, the value N_i is \approx normally distributed with average $a = p_i \cdot N$ and $\sigma = \sqrt{p_i \cdot (1 p_i) \cdot N}$.
- With certainty depending on k_0 , we conclude that $N_i \in [a k_0 \cdot \sigma, a + k_0 \cdot \sigma]$.
- Let $N_{\text{cons}}(N)$ be the number of situations for which N_i is within these intervals.
- Then, for N repetitions, we need $q(N) = \log_2(N_{\text{cons}})$ questions.
- Per repetition, we need S = q(N)/N questions.

Types of Uncertainty: . . . Traditional Amount of ... How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: . . . Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 6 of 30 Go Back Full Screen Close Quit

6. Shannon's Derivation (cont-d)

- Shannon's theorem: $S \to -\sum p_i \cdot \log_2(p_i)$.
- Proof: $N_{\rm cons} \sim$

$$\frac{N!}{N_1!(N-N_1)!} \cdot \frac{(N-N_1)!}{N_2!(N-N_1-N_2)!} \cdot \dots = \frac{N!}{N_1!N_2!\dots N_n!}$$

where $k! \sim (k/e)^k$. So,

$$N_{\rm cons} \sim \frac{\left(\frac{N}{e}\right)^N}{\left(\frac{N_1}{e}\right)^{N_1} \cdot \ldots \cdot \left(\frac{N_n}{e}\right)^{N_n}}$$

- Since $\sum N_i = N$, terms e^N and e^{N_i} cancel each other.
- Substituting $N_i = N \cdot f_i$ and taking logarithms, we get $\log_2(N_{\text{cons}}) \approx -N \cdot f_1 \cdot \log_2(f_1) \ldots N \cdot f_n \log_2(f_n)$.

Types of Uncertainty: . . . Traditional Amount of ... How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: . . . Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 7 of 30 Go Back Full Screen Close

7. Case of a Continuous Probability Distribution

- Once an approximate value r is determined, possible values of x form an interval $[r \varepsilon, r + \varepsilon]$ of width 2ε .
- So, we divide the real line into intervals $[x_i, x_{i+1}]$ of width 2ε and find the interval that contains x.
- The average number of questions is

$$S = -\sum p_i \cdot \log_2(p_i),$$

where the prob. p_i that $x \in [x_i, x_{i+1}]$ is $p_i \approx 2\varepsilon \cdot \rho(x_i)$.

- So, for small ε , we have $S = -\sum \rho(x_i) \cdot \log_2(\rho(x_i)) \cdot 2\varepsilon \sum \rho(x_i) \cdot 2\varepsilon \cdot \log_2(2\varepsilon).$
- The first sum in this expression is the integral sum for the integral $S(\rho) \stackrel{\text{def}}{=} \int \rho(x) \cdot \log_2(\rho(x)) dx$, so

$$S \approx -\int \rho(x) \cdot \log_2(\rho(x)) dx - \log_2(2\varepsilon).$$

8. Partial Information about Probability Distribution

- *Ideal case:* complete information about the probabilities $p = (p_1, \ldots, p_n)$ of different alternatives.
- In practice: often, we only have partial information about these probabilities.
- In other words: we have a set P of possible values of p.
- Convexity of P:
 - if it is possible to have $p \in P$ and $p' \in P$,
 - then it is also possible that we have p with some probability α and p' with the probability 1α .
- Definition. By the entropy S(P) of a probabilistic knowledge P, we mean $S(P) \stackrel{\text{def}}{=} \max_{p \in P} S(p)$.
- Proposition. When $N \to \infty$, the average number of questions tends to the S(P).

9. Problem with this Definition

- *Problem:* the entropy is the same for two different cases:
 - when the distribution is uniform $p_1 = \ldots = p_n = 1$; and
 - when we have no information about the probabilities.
- Why this is a problem: in the second case, we have more uncertainty.
- Natural solution (Klir): instead of $S(P) = \max S(\rho)$, return the interval $\mathbf{S}(P) = [\min S(\rho), \max S(\rho)]$.
- Problems with this solution:
 - maximum of a convex function is easy to compute, minimum is not;
 - for a p-box, the minimum is often 0.

Types of Uncertainty: . . . Traditional Amount of ... How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 10 of 30 Go Back Full Screen Close Quit

10. Discrete Case: Reminder and Outline

- Uncertainty: usually, there are several (n) different states which are consistent with our knowledge.
- Question: how much information we need to gain to determine the actual state of the world?
- $Natural\ measure:$ average number S of "yes"-"no" questions that we need to ask.
- Probabilistic case: sometimes, we know the probabilities p_1, \ldots, p_n of different states.
- Problem: often, we only know intervals $\mathbf{p}_i = [\underline{p}_i, \overline{p}_i]$.
- Compute: the range $\mathbf{S} = [\underline{S}, \overline{S}]$ of $S = -\sum p_i \cdot \log_2(p_i)$.
- Result 1: we can efficiently compute \overline{S} .
- Result 2: computing \underline{S} is, in general, NP-hard.
- Result 3: we can efficiently compute \underline{S} in many practically important situations.

11. Computing \overline{S} : Analysis of the Problem

• Main idea: if we change $p_j \to p_j + \Delta$ and $p_k \to p_k - \Delta$, then

$$\Delta S = \left(\frac{\partial S}{\partial x_j} - \frac{\partial S}{\partial x_k}\right) \cdot \Delta + o(\Delta) = (-\log_2(p_j) + \log_2(p_k)) \cdot \Delta + o(\Delta) \le 0.$$

- First conclusion:
 - if $p_j \in (\underline{p}_j, \overline{p}_j)$ and $p_k \in (\underline{p}_k, \overline{p}_k)$, then $\Delta S \leq 0$ for all small Δ
 - hence $-\log_2(p_j) + \log_2(p_k) = 0$ and $p_j = p_k = p$.
- Second conclusion: if $p_j = \underline{p}_j$ and $p_k > \underline{p}_k$, then $\Delta S \leq 0$ for all small $\Delta > 0$ hence

$$p_k \leq p_j$$
.

• Third conclusion: if $p_j = \overline{p}_j$ and $p_k < \overline{p}_k$, then $\Delta S \leq 0$ for all small $\Delta < 0$ hence $p_j \leq p_k$.

Types of Uncertainty: . . . Traditional Amount of . . . How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: . . . Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 12 of 30 Go Back Full Screen Close

12. Towards an Efficient Algorithm for Computing \overline{S}

- Conclusions reminder:
 - if $p_j \in (\underline{p}_i, \overline{p}_j)$ and $p_k \in (\underline{p}_k, \overline{p}_k)$, then $p_j = p_k = p$;
 - if $p_j = \underline{p}_j$ and $p_k > \underline{p}_k$, then $p_k \leq p_j$;
 - if $p_j = \overline{p}_j$ and $p_k < \overline{p}_k$, then $p_j \le p_k$.
- Result of the analysis: once we know the location of p in comparison to p_i and \overline{p}_i , then:
 - when $\overline{p}_i < p$, we have $p_i = \overline{p}_i$;
 - when $p < \underline{p}_i$, we have $p_i = \underline{p}_i$;
 - when $p_i \leq p \leq \overline{p}_i$, we have $p_i = p$.
- First stage: sort \underline{p}_i and \overline{p}_i .
- Second stage: for each of 2n + 2 locations of p in this sorting, we perform O(n) steps to find corr. p_i and S.
- Computation time: $(2n+2) \cdot O(n) = O(n^2)$.

Types of Uncertainty:...

Traditional Amount of...

How to Extend These...

Shannon's Derivation:...

Case of a Continuous . . .

Discrete Case:

Continuous Case: p-Box

Alternative Approach: . . .

Adding Fuzzy Uncertainty

Beyond Number of . . .

Title Page

Go Back

Full Screen

Close

13. Quadratic-Time Algorithm for Computing \overline{S}

- Sort p_i , \overline{p}_i : $p_{(0)} = 0 < p_{(1)} < \ldots < p_{(m)} < p_{(m+1)} = 1$.
- For every k from 0 to m-1, compute

$$M_k = -\sum_{i: \overline{p}_i \leq p_{(k)}} \overline{p}_i \cdot \log_2(\overline{p}_i) - \sum_{j: \underline{p}_j \geq p_{(k+1)}} \underline{p}_j \cdot \log_2(\underline{p}_j);$$

$$P_k = \sum_{i: \overline{p}_i \leq p_{(k)}} \overline{p}_i + \sum_{j: \underline{p}_j \geq p_{(k+1)}} \underline{p}_j;$$

$$n_k = \#\{i : \overline{p}_i \le p_{(k)} \lor \underline{p}_i \ge p_{(k+1)}\}.$$

- If $n_k = n$, we take $S_k = M_k$.
- If $n_k < n$, then we compute $p = \frac{1 P_k}{n n_k}$. If $p \in [p_{(k)}, p_{(k+1)}]$, then we compute

$$S_k = M_k - (n - n_k) \cdot p \cdot \log_2(p).$$

• Finally, we return the largest of these values S_k as the desired bound \overline{S} .

Types of Uncertainty: . . . Traditional Amount of ... How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: . . . Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 14 of 30 Go Back Full Screen Close Quit

14. How to Reduce the Computation Time of Computing \overline{S} to $O(n \cdot \log(n))$

- Observation: after sorting, we can mark, for each $p_{(j)}$, which endpoints coincide with this $p_{(i)}$.
- Initial computation M_0 , P_0 , and n_0 takes O(n) steps.
- Iteration: from M_k to M_{k+1} (P_k to P_{k+1}), we only update the values corresponding to the zone's endpoints.
- Overall, for all the updates, we thus take as much time as there are updated values p_i .
- Each endpoint in this arrangement changes only once.
- Conclusion: overall, we use a linear number of steps (2n) to update all the values M_k , P_k , and n_k .
- Resulting computation time:

$$O(n \cdot \log_2(n)) + O(n) + O(n) = O(n \cdot \log_2(n)).$$

• Sort
$$p_i$$
, \overline{p}_i : $0 = p_{(0)} < p_{(1)} < \ldots < p_{(m)} < p_{(m+1)} = 1$.

• Form sets
$$A_k^- \stackrel{\text{def}}{=} \{i : \underline{p}_i = p_{(k)}\}, A_k^+ \stackrel{\text{def}}{=} \{i : \overline{p}_i = p_{(k)}\}.$$

• Compute
$$M_0 = -\sum_{i=1}^n \underline{p}_i \cdot \log_2(\underline{p}_i)$$
, $P_0 = \sum_{i=1}^n \underline{p}_i$, $n_0 = n$.

• For k = 1, ..., m, compute

$$M_{k+1} = M_k + \sum_{j \in A_{k+1}^-} \underline{p}_j \cdot \log_2(\underline{p}_j) - \sum_{j \in A_{k+1}^+} \overline{p}_j \cdot \log_2(\overline{p}_j);$$

$$P_{k+1} = P_k - \sum_{j \in A_{k+1}^-} \underline{p}_j + \sum_{j \in A_{k+1}^+} \overline{p}_j; \quad n_{k+1} = n_k - |A_{k+1}^-| + |A_{k+1}^+|.$$

- If $n_k < n$, we compute $p = \frac{1 P_k}{n n_k}$; if $p \in [p_{(k)}, p_{(k+1)}]$, we compute $S_k = M_k - (n - n_k) \cdot p \cdot \log_2(p)$.
- The largest of these S_k is \overline{S} .

Types of Uncertainty: . . .

Traditional Amount of ...

How to Extend These . . .

Shannon's Derivation: . . .

Case of a Continuous . . .

Discrete Case: . . .

Continuous Case: p-Box

Alternative Approach: . . . Adding Fuzzy Uncertainty

Beyond Number of . . .

Title Page

Page 16 of 30

Go Back

Full Screen

Close

- Problem: sorting requires $O(n \log(n))$ steps.
- *Idea*: use linear-time algorithm for computing median.
- At each iteration, we have:

$$J^- = \{\underline{p}_i : \text{ we know that } p_i \neq \underline{p}_i \text{ for optimal } p\} \cup \{\overline{p}_i : \text{ we know that } p_j = \overline{p}_i \text{ for optimal } p\};$$
 $J^+ = \{\underline{p}_i : \text{ we know that } p_i = \underline{p}_i \text{ for optimal } p\} \cup \{\overline{p}_i : \text{ we know that } p_j \neq \overline{p}_i \text{ for optimal } p\},$
and the set J of undecided endpoints.

- In the beginning, $J^- = J^+ = \emptyset$.
- At each iteration we also update the values $N^- = |J^-|$, $N^{+} = |J^{+}|, E^{-} = \sum_{\overline{p}_{i} \in J^{-}} \overline{p}_{j}, \text{ and } E^{+} = \sum_{p_{i} \in J^{+}} \underline{p}_{i}.$
- Initially, $N^- = N^+ = E^- = E^+ = 0$.

Types of Uncertainty: . . . Traditional Amount of ...

How to Extend These . . .

Shannon's Derivation: . . .

Discrete Case: . . .

Case of a Continuous . . .

Continuous Case: p-Box Alternative Approach: . . .

Adding Fuzzy Uncertainty

Beyond Number of . . . Title Page

Page 17 of 30

Full Screen

Close

Go Back

17. Iterations of the New Algorithm

- Compute the median m of the undecided set J.
- Divide *J* into two sets

$$Q^- = \{ p \in J : p \le m \}, \quad Q^+ = \{ p \in J : p > m \}.$$

- Compute $m^+ = \min\{p : p \in Q^+\}.$
- Compute $e^- = E^- + \sum_{\overline{p}_j \in Q^-} \overline{p}_j$, $e^+ = E^+ + \sum_{\underline{p}_i \in Q^+} \underline{p}_i$,

$$n^{-} = N^{-} + |\{\overline{p}_{j} \in Q^{-}\}|, \quad n^{+} = N^{+} + |\{\underline{p}_{i} \in Q^{+}\}|,$$

$$1 - e^{-} - e^{+}$$

and
$$r = \frac{1 - e^- - e^+}{n - n^- - n^+}$$
.

- We want: to make sure that $p \in [p_{(k)}, p_{(k+1)}]$.
- We can check: whether we are to the left or to the same of this k.

Types of Uncertainty: . . .

Traditional Amount of...

How to Extend These...

Shannon's Derivation: . . . Case of a Continuous . . .

Discrete Case: . . .

Alternative Approach: . . .

Continuous Case: p-Box

Adding Fuzzy Uncertainty

Title Page

Beyond Number of . . .

Page 18 of 30

Page 1

Go Back

Full Screen

Close

Iterations of the New Algorithm (cont-d)

- $r < m: J^- \to J^- \cup Q^-, E^- \to e^-, J \to Q^+, N^- \to n^-.$
- If $r > m^+$: $J^+ \to J^+ \cup Q^+$, $E^+ \to e^+$, $J \to P^-$, and $N^+ \rightarrow n^+$
- If $m < r < m^+$, set $J \to \emptyset$.
 - Stopping criterion: |J| < 1.
- Final stage: compute $S(p_1, \ldots, p_n)$, where:
 - $p_i = \overline{p}_i$ when $\overline{p}_i \in J^-$,
 - $p_i = p_i$ when $p_i \in J^+$,
 - $p_i = r$ for $i \in J$.
- Observation: each iteration takes time $C \cdot |J|$, and halves the set J.
- Conclusion: algorithm takes time

$$C \cdot (2n + n + (n/2) + \ldots) = C \cdot 4n = O(n).$$

Types of Uncertainty: . . .

Traditional Amount of . . .

How to Extend These . . .

Shannon's Derivation: . . . Case of a Continuous . . .

Discrete Case: . . .

Continuous Case: p-Box Alternative Approach: . . .

Adding Fuzzy Uncertainty

Beyond Number of . . . Title Page

Page 19 of 30

Go Back

Full Screen

Close

19. Computing \underline{S} Is, In General, NP-Hard

- Algorithms: several algorithms for computing \underline{S} are known (Abellan et al.)
- Problem: in the worst case, these algorithms require time that grows exponentially with n.
- Explanation: we prove that computing \underline{S} in general case is, indeed, NP-hard.
- Main idea of the proof: we reduce a known NP-hard problem to the problem of computing \underline{S} .
- Reduction: we use the subset problem (known to be NP-hard:)
 - given n positive integers s_1, \ldots, s_n ,
 - check whether there exist signs $\eta_i \in \{-1, +1\}$ for which the signed sum $\sum_{i=1}^{n} \eta_i \cdot s_i$ is equal to 0.

20. Effective Algorithm for Computing \underline{S} When Intervals Are Not Contained in Each Other

- Important case of interval uncertainty: we know all p_i with the same accuracy Δ .
- Definition: intervals $[\underline{p}_i, \overline{p}_i]$ satisfy the subset property if $[\underline{p}_i, \overline{p}_i] \not\subset (\underline{p}_i, \overline{p}_j)$ for all i and j.
- Consequences:
 - when we sort the intervals in lexicographic order, then p_i and \overline{p}_i are also sorted;
 - it is sufficient to consider monotonic optimal tuples p_1, \ldots, p_n , for which $p_i \leq p_{i+1}$ for all i;
 - in the optimal tuple, at most one p_i is inside the corresponding interval
- Result: an $O(n \cdot \log(n))$ algorithm that computes \underline{S} for all cases when the subset property holds.

21. Algorithm for Computing S

- Sort \mathbf{p}_i in lexicographic order: $\mathbf{p}_1 \leq_{\text{lex}} \ldots \leq_{\text{lex}} \mathbf{p}_n$.
- Objective: compute $P_i = \sum_{j:j< i} \underline{p}_j + \sum_{m:m>i} \overline{p}_m$,

$$M_i = -\sum_{j:j< i} \underline{p}_j \cdot \log_2(\underline{p}_j) - \sum_{m:m>i} \overline{p}_m \cdot \log_2(\overline{p}_m).$$

- Compute $M_1 = -\sum_{j=2}^n \overline{p}_j \cdot \log_2(\overline{p}_j)$ and $P_1 = \sum_{j=2}^n \overline{p}_j$.
- For i from 2 to n, compute $P_i = P_{i-1} + \underline{p}_{i-1} \overline{p}_i$ and $M_i = M_{i-1} \underline{p}_{i-1} \cdot \log_2(\underline{p}_{i-1}) + \overline{p}_i \cdot \log_2(\overline{p}_i)$.
- Compute $p_i = \frac{1 P_i}{n 1}$.
- If $p_i \in [\underline{p}_i, \overline{p}_i]$, compute $S_i = M_i p_i \cdot \log_2(p_i)$.
- Return the smallest of these values S_i as \underline{S} .
- There is also a linear-time version of this algorithm.

Types of Uncertainty: . . .

Traditional Amount of . . .

How to Extend These . . .

Shannon's Derivation:...

Case of a Continuous...

Discrete Case:...

Continuous Case: p-Box

Alternative Approach: . . . Adding Fuzzy Uncertainty

Beyond Number of . . .

Title Page

Page 22 of 30

Go Back

Full Screen

Close

Close

22. Continuous Case: p-Box

• Situation: we know that

$$F(x) \in \mathbf{F}(x) = [F_0(x) - \Delta F(x), F_0(x) + \Delta F(x)],$$

where $F_0(x)$ is smooth, with $\rho_0(x) \stackrel{\text{def}}{=} F_0'(x)$.

- Problem: find the range $[\underline{S}, \overline{S}] = \{S_{\varepsilon}(F) : F \in \mathbf{F}\}.$
- Known result: asymptotically,

$$\overline{S} \sim -\int \rho_0(x) \cdot \log_2(\rho_0(x)) dx - \log_2(2\varepsilon).$$

• New result:

$$\underline{S} \sim -\int \rho_0(x) \cdot \log_2(\max(2\Delta F(x), 2\varepsilon \cdot \rho_0(x))) dx.$$

• Comment: when $\varepsilon \to 0$, $\overline{S} \to \infty$ but \underline{S} remains finite:

$$\underline{S} \to -\int \rho_0(x) \cdot \log_2(2\Delta F(x)) dx.$$

Types of Uncertainty: . . . Traditional Amount of ... How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: . . . Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 23 of 30 Go Back Full Screen Close Quit

23. Case of a p-Box: Idea of the Proof

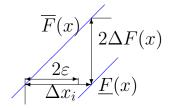
• Result – reminder:

$$\underline{S} \sim -\int \rho_0(x) \cdot \log_2(\max(2\Delta F(x), 2\varepsilon \cdot \rho_0(x))) dx.$$

• *Idea*: $p_i \approx \rho_0(x_i) \cdot \Delta x_i$, hence

$$-\sum p_i \cdot \log_2(p_i) \approx -\int \rho_0(x) \cdot \log(\rho_0(x) \cdot \Delta x) \, dx.$$

• Here, $\Delta x_i = \max\left(\frac{2\Delta F(x)}{\rho_0(x)}, 2\varepsilon\right)$:



24. Alternative Approach: Idea

- Previous situation:
 - we do not know the object,
 - we want to find out how many "yes"-"no" questions we need to find the object x.
- New situation:
 - in addition to not knowing the object x,
 - we also do not know the exact probability distribution $\rho(x)$.
- Solution:
 - in addition to finding out how many binary questions we need to find x,
 - also find out how many "yes"-"no" questions we need to find the exact probability distribution $\rho(x)$.

Types of Uncertainty: . . . Traditional Amount of . . . How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 25 of 30 Go Back Full Screen Close Quit

25. Alternative Approach: Formulas

- Objective: find cdf F(x).
- Details: fix two accuracy values:
 - accuracy ε with which we approximate probabilities;
 - accuracy δ with which we approximate x,
- Case of a p-box situation: for every x_0 , we have the interval $[F(x_0), \overline{F}(x_0)]$. To
- To find $F(x_0)$, we need $\log_2(\overline{F}(x_0) \underline{F}(x_0)) \log_2(2\delta)$ questions.
- \bullet Conclusion: the overall number of questions for all x is

$$\sim \int \log_2(\overline{F}(x) - \underline{F}(x)) dx = \int \log_2(2\Delta F(x)).$$

26. Adding Fuzzy Uncertainty

- Crisp case: we have a (crisp) set P of possible probability distributions (e.g., a p-box).
- In this case, we have information I(P).
- \bullet Fuzzy case: we have a fuzzy set \mathcal{P} of possible probability distributions.
- In other words: we have a family of nested crisp sets $\mathcal{P}(\alpha) \alpha$ -cuts of the given fuzzy set.
- Solution: we define $I(\mathcal{P})$ as a fuzzy number whose α cut is $I(\mathcal{P}(\alpha))$.
- Alternative approach: we can also interpret degree of possibility in probabilistic terms.
- Alternative solution: compute the corresponding information by using probability formulas (Ramer et al.).

27. Beyond Number of Questions: How to Measure Loss of Privacy

- Problem with amount of information: 1st bit of salary is crucial, last bit is useless.
- Natural idea: gauge the loss of privacy by the resulting worst-case financial loss.
- Example: the effect of a person's blood pressure x on this person's insurance payments:
 - let f(x) be average medical expenses for a person with blood pressure x; let α be investment profit;
 - in case of privacy, the insurance payments are

$$r = (1 + \alpha) \cdot E[f(x)];$$

- if a person's blood pressure is revealed as x_0 , with $f(x_0) > E[f(x)]$, then the payments are higher:

$$r_0 = (1 + \alpha) \cdot f(x_0) > r = (1 + \alpha) \cdot E[f(x)].$$

Types of Uncertainty: . . . Traditional Amount of ... How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 28 of 30 Go Back Full Screen Close Quit

28. Loss of Privacy: Definition and the Main Result

- Situation: we knew that $x \in [L, U]$, now we learned that $x \in [l, u] \subseteq [L, U]$.
- We knew: $P \in \mathcal{P} = \{\text{all distributions located on } [L, U]\}.$
- We know: $P \in \mathcal{Q} = \{\text{all distributions located on } [l, u]\}.$
- Let M > 0. The amount of privacy $A(\mathcal{P})$ is the largest value of $F(x_0) \int \rho(x) \cdot F(x) dx$ over:
 - all possible values x_0 ,
 - all possible probability distributions $\rho \in \mathcal{P}$, and
 - all possible f-s F(x) for which $|F'(x)| \leq M$ for all x.
- Result: the relative loss of privacy $\frac{A(\mathcal{P}) A(\mathcal{Q})}{A(\mathcal{P})}$ is equal to $1 \frac{u l}{U L}$.
- Example: relative loss of privacy is 1/2 for the 1st bit, 1/4 for the 2nd bit, ..., $1/2^k$ for the k-th bit, ...

Types of Uncertainty: . . . Traditional Amount of ... How to Extend These . . . Shannon's Derivation: . . . Case of a Continuous . . . Discrete Case: . . . Continuous Case: p-Box Alternative Approach: . . . Adding Fuzzy Uncertainty Beyond Number of . . . Title Page Page 29 of 30 Go Back Full Screen

Close

29. Acknowledgments

This work was supported in part by:

- by National Science Foundation grants HRD-0734825, EAR-0225670, and EIA-0080940,
- by Texas Department of Transportation grant No. 0-5453, and
- by the conference organizers.

