Bounded Rationality in Decision Making Under Uncertainty: Towards Optimal Granularity

Joe Lorkowski

Department of Computer Science University of Texas at El Paso El Paso, Texas 79968, USA Iorkowski@computer.org

Overview

- Starting with Kahneman and Tversky, researchers found many examples when decision making seems irrational.
- In this dissertation, we show that:
 - this seemingly irrational decision making can be explained
 - if we take into account that human abilities to process information are limited.
- As a result of these limited abilities:
 - instead of the exact values of different quantities,
 - we operate with granules that contain these values.
- On several examples, we show that:
 - optimization under such granularity restriction
 - indeed leads to observed human decision making.
- Thus, granularity helps explain seemingly irrational human decision making.

Bad Decisions vs. Irrational Decisions

- Most economic models are based on the assumption that a rational person maximizes his/her "utility".
- Some weird behaviors can be still explained this way just utility is weird.
- For a drug addict, the utility of getting high is so large that it overwhelms any negative consequences.
- However, sometimes, people exhibit behavior which cannot be explained as maximizing utility.

Simple Example of Irrational Decision Making

- A customer shopping for an item has several choices a_i:
 - ▶ some of these choices have better quality $a_i > a_i$,
 - but are more expensive.
- When presented with three alternatives a₁ > a₂ > a₃, in most cases, most customers select a middle one a₂.
- This means that a₂ is better than a₃.
- ▶ However, when presented with $a_2 > a_3 > a_4$, the same customer selects a_3 .
- ► This means that to him, a₃ is better than a₂ a clear inconsistency.
- We show that granularity explains this behavior.

Part 0: Traditional Decision Theory

Traditional Decision Theory: Reminder

- Main assumption for any two alternatives A and A':
 - either A is better (we will denote it $A' \prec A$),
 - or A' is better (we will denote it $A \prec A'$),
 - or A and A' are of equal value (denoted $A \sim A'$).
- Resulting scale for describing the quality of different alternatives A:
 - ▶ to define a scale, we select a very bad alternative A₀ and a very good alternative A₁;
 - ▶ for each $p \in [0, 1]$, we can form a lottery L(p) in which we get A_1 with probability p and A_0 with probability 1 p;
 - ▶ for each reasonable alternative A, we have $A_0 = L(0) \prec A \prec L(1) = A_1$;
 - ▶ thus, for some p_0 , we switch from $L(p) \prec A$ for $p < p_0$ to $L(p) \succ A$ for $p > p_0$, i.e., there exists a "switch" value u(A) for which $L(u(A)) \equiv A$;
 - ▶ this value u(A) is called the *utility* of the alternative A.

Utility Scale

- ▶ We have a lottery L(p) for every probability $p \in [0, 1]$:
 - p = 0 corresponds to A_0 , i.e., $L(0) = A_0$;
 - ▶ p = 1 corresponds to A_1 , i.e., $L(1) = A_1$;
 - ▶ $0 corresponds to <math>A_0 \prec L(p) \prec A_1$;
 - ▶ p < p' implies $L(p) \prec L(p')$.
- ► There is a continuous monotonic scale of alternatives:

$$L(0) = A_0 \prec \ldots \prec L(p) \prec \ldots \prec L(p') \prec \ldots \prec L(1) = A_1.$$

► This utility scale is used to gauge the attractiveness of each alternative.

How to Elicit the Utility Value: Bisection

- ▶ We know that $A \equiv L(u(A))$ for some $u(A) \in [0, 1]$.
- ▶ Suppose that we want to find u(A) with accuracy 2^{-k} .
- ▶ We start with $[\underline{u}, \overline{u}] = [0, 1]$. Then, for i = 1 to k, we:
 - compute the midpoint u_{mid} of $[\underline{u}, \overline{u}]$
 - ask the expert to compare A with the lottery $L(u_{mid})$
 - ▶ if $A \leq L(u_{\text{mid}})$, then $u(A) \leq u_{\text{mid}}$, so we can take

$$[\underline{u}, \overline{u}] = [\underline{u}, u_{\text{mid}}];$$

▶ if $A \succeq L(u_{\text{mid}})$, then $u(A) \ge u_{\text{mid}}$, so we can take

$$[\underline{u}, \overline{u}] = [u_{\text{mid}}, \underline{u}].$$

- ▶ At each iteration, the width of $[\underline{u}, \overline{u}]$ decreases by half.
- ▶ After k iterations, we get an interval $[\underline{u}, \overline{u}]$ of width 2^{-k} that contains u(A).
- ▶ So, we get u(A) with accuracy 2^{-k} .

Utility Theory and Human Decision Making

- Decision based on utility values
 - ▶ Which of the utilities u(A'), u(A''), ..., of the alternatives A', A'', ... should we choose?
 - ▶ By definition of utility, A' is preferable to A'' if and only if u(A') > u(A'').
 - We should always select an alternative with the largest possible value of utility.
 - So, to find the best solution, we must solve the corresponding optimization problem.
- Our claim is that when people make definite and consistent choices, these choices can be described by probabilities.
 - We are not claiming that people always make rational decisions.
 - We are not claiming that people estimate probabilities when they make rational decisions.

Estimating the Utility of an Action a

- ▶ We know possible outcome situations $S_1, ..., S_n$.
- We often know the probabilities $p_i = p(S_i)$.
- ► Each situation S_i is equivalent to the lottery $L(u(S_i))$ in which we get:
 - A_1 with probability $u(S_i)$ and
 - A_0 with probability $1 u(S_i)$.
- ▶ So, *a* is equivalent to a complex lottery in which:
 - we select one of the situations S_i with prob. $p_i = P(S_i)$;
 - ▶ depending on S_i , we get A_1 with prob. $P(A_1|S_i) = u(S_i)$.
- ► The probability of getting A₁ is

$$P(A_1) = \sum_{i=1}^{n} P(A_1|S_i) \cdot P(S_i)$$
, i.e., $u(a) = \sum_{i=1}^{n} u(S_i) \cdot p_i$.

- ► The sum defining *u*(*a*) is the expected value of the outcome's utility.
- So, we should select the action with the largest value of expected utility $u(a) = \sum p_i \cdot u(S_i)$.

Subjective Probabilities

- ► Sometimes, we do not know the probabilities *p_i* of different outcomes.
- ► In this case, we can gauge the subjective impressions about the probabilities.
- ▶ Let's fix a prize (e.g., \$1). For each event *E*, we compare:
 - ▶ a lottery \(\ell_E\) in which we get the fixed prize if the event \(E\) occurs and 0 is it does not occur, with
 - ▶ a lottery $\ell(p)$ in which we get the same amount with probability p.
- ▶ Here, $\ell(0) \prec \ell_E \prec \ell(1)$; so for some p_0 , we switch from $\ell(p) \prec \ell_E$ to $\ell_E \prec \ell(p)$.
- ▶ This threshold value ps(E) is called the *subjective* probability of the event E: $\ell_E \equiv \ell(ps(E))$.
- ► The utility of an action a with possible outcomes S_1, \ldots, S_n is thus equal to $u(a) = \sum_{i=1}^n ps(E_i) \cdot u(S_i)$.

Traditional Approach Summarized

- We assume that
 - we know possible actions, and
 - we know the exact consequences of each action.
- Then, we should select an action with the largest value of expected utility.

Part 1: First Example of Seemingly Irrational Decision Making – Compromise Effect

Compromise Effect: Reminder

- A customer shopping for an item has choices: some cheaper, some more expensive but of higher quality.
- Examples: shopping for a camera, for a hotel room.
- Researchers asked the customers to select one of the three randomly selected alternatives.
- They expected all three to be selected with equal probability.
- Instead, in the overwhelming majority of cases, customers selected the intermediate alternative.
- The intermediate alternative provides a compromise between the quality and cost.
- ▶ So, this phenomenon was named *compromise effect*.

Why This Is Irrational?

- Selecting the middle alternative seems reasonable.
- ▶ But let's consider alternatives $a_1 < a_2 < a_3 < a_4$ sorted by price (and quality).
- If we present the user with three choices a₁ < a₂ < a₃, the user will select the middle choice a₂.</p>
- ▶ This means that, to the user, a_2 is better than a_3 .
- ▶ But if we present the user with three other choices $a_2 < a_3 < a_4$, the same user will select a_3 .
- ▶ So, to the user, the alternative a_3 is better than a_2 .
- ▶ If in a pair-wise comparison, *a*₃ is better, then the first choice is wrong, else the second choice is wrong.
- In both cases, one of the two choices is irrational.

This is Not Just an Experimental Curiosity, Customers' Have Been Manipulated This Way

- ► At first glance, this seems like an optical illusion or a logical paradox: interesting but not very important.
- Actually, it is important: customers have been manipulated into buying a more expensive product.
- ▶ If there are two types of a product, a company adds an even more expensive third option.
- Recent research shows the compromise effect only happens when a customer has no additional information.
- In situations when customers were given access to additional information, their selections were consistent.
- However, in situation when decisions need to be made under major uncertainty, this effect is clearly present.
- ▶ How to explain such a seemingly irrational behavior?

Symmetry Approach: Main Idea

Main idea:

- if the situation is invariant with respect to some natural symmetries,
- then it is reasonable to select an action which is also invariant with respect to all these symmetries.
- This approach has indeed been helpful in dealing with uncertainty. In particular, it explains:
 - ► the use of a sigmoid activation function $s(z) = \frac{1}{1 + \exp(-z)}$ in neural networks,
 - the use of the most efficient t-norms and t-conorms in fuzzy logic,
 - etc.

What Do We Know About the Utility of Each Alternative?

- The utility of each alternatives comes from two factors:
 - ▶ the first factor u_1 comes from the quality: the higher the quality, the better i.e., the larger u_1 ;
 - ▶ the second factor u_2 comes from price: the lower the price, the better i.e., the larger u_2 .
- ▶ We have alternatives a < a' < a'' characterized by pairs $u(a) = (u_1, u_2), u(a') = (u'_1, u'_2), \text{ and } u(a'') = (u''_1, u''_2).$
- We do not know the values of these factors, we only know that

$$u_1 < u_1' < u_1''$$
 and $u_2'' < u_2' < u_2$.

- Since we only know the order, we can mark the values u_i as L (Low), M (Medium), and H (High).
- ▶ Then u(a) = (L, H), u(a') = (M, M), u(a'') = (H, L).

Natural Transformations and Symmetries

- We do not know a priori which of the utility components is more important.
- It is thus reasonable to treat both components equally.
- So, swapping the two components is a reasonable transformation:
 - if we are selecting an alternative based on the pairs

$$u(a) = (L, H), \ u(a') = (M, M), \text{ and } u(a'') = (H, L),$$

then we should select the exact same alternative based on the "swapped" pairs

$$u(a) = (H, L), u(a') = (M, M), \text{ and } u(a'') = (L, H).$$

Transformations and Symmetries (cont-d)

- Similarly, there is no reason to a priori prefer one alternative versus the other.
- So, any permutation of the three alternatives is a reasonable transformation.
- We start with

$$u(a) = (L, H), u(a') = (M, M), u(a'') = (H, L).$$

If we rename a and a", we get

$$u(a) = (H, L), u(a') = (M, M), u(a'') = (L, H).$$

- For example:
 - if we originally select an alternative a with

$$u(a)=(L,H),$$

then, after the swap, we should select the same alternative – which is now denoted by a''.

What Can We Conclude From These Symmetries

We start with

$$u(a) = (L, H), u(a') = (M, M), u(a'') = (H, L).$$

▶ If we swap u_1 and u_2 , we get

$$u(a) = (H, L), \ u(a') = (M, M), \ u(a'') = (L, H).$$

Now, if we also rename a and a^{''}, we get

$$u(a) = (L, H), \ u(a') = (M, M), \ u(a'') = (H, L).$$

- ► These are the same utility values with which we started.
- So, if originally, we select a with u(a) = (L, H), in the new arrangements we should also select a.
- ▶ But the new a is the old a''.
- ▶ So, if we selected a, we should select a'' a contradiction.



What Can We Conclude (cont-d)

We start with

$$u(a) = (L, H), \ u(a') = (M, M), \ u(a'') = (H, L).$$

▶ If we swap u_1 and u_2 , we get

$$u(a) = (H, L), \ u(a') = (M, M), \ u(a'') = (L, H).$$

Now, if we also rename a and a^{''}, we get

$$u(a) = (L, H), \ u(a') = (M, M), \ u(a'') = (H, L).$$

- ► These are the same utility values with which we started.
- ▶ So, if originally, we select a'' with u(a'') = (H, L), in the new arrangements we should also select a.
- ▶ But the new a'' is the old a.
- ▶ So, if we selected a'', we should select a a contradiction.

First Example: Summarizing

We start with

$$u(a) = (L, H), u(a') = (M, M), u(a'') = (H, L).$$

▶ If we swap u_1 and u_2 , we get

$$u(a) = (H, L), \ u(a') = (M, M), \ u(a'') = (L, H).$$

Now, if we also rename a and aⁿ, we get

$$u(a) = (L, H), \ u(a') = (M, M), \ u(a'') = (H, L).$$

- ▶ We cannot select a this leads to a contradiction.
- ▶ We cannot select a'' this leads to a contradiction.
- The only consistent choice is to select a'.
- ▶ This is exactly the compromise effect.

First Example: Conclusion

- Experiments show that:
 - ▶ when people are presented with three choices a < a' < a'' of increasing price and increasing quality,</p>
 - and they do not have detailed information about these choices,
 - then in the overwhelming majority of cases, they select the intermediate alternative a'.
- This "compromise effect" is, at first glance, irrational:
 - selecting a' means that, to the user, a' is better than a'', but
 - in a situation when the user is presented with a' < a'' < a''', the user prefers a'' to a'.
- We show that a natural symmetry approach explains this seemingly irrational behavior.

Part 2: Second Example of Seemingly Irrational Decision Making – Biased Probability Estimates

Second Example of Irrational Decision Making: Biased Probability Estimates

- We know an action a may have different outcomes u_i with different probabilities $p_i(a)$.
- ▶ By repeating a situation many times, the average expected gain becomes close to the mathematical expected gain:

$$u(a) \stackrel{\text{def}}{=} \sum_{i=1}^{n} p_i(a) \cdot u_i.$$

- ▶ We expect a decision maker to select action a for which this expected value u(a) is greatest.
- ► This is close, but not exactly, what an actual person does.

Kahneman and Tversky's Decision Weights

- Kahneman and Tversky found a more accurate description is obtained by:
 - an assumption of maximization of a weighted gain where
 - the weights are determined by the corresponding probabilities.
- ▶ In other words, people select the action a with the largest weighted gain

$$w(a) \stackrel{\text{def}}{=} \sum_{i} w_i(a) \cdot u_i.$$

▶ Here, $w_i(a) = f(p_i(a))$ for an appropriate function f(x).

Decision Weights: Empirical Results

Empirical decision weights:

	probability	0	1	2	5	10	20	50
Ì	weight	0	5.5	8.1	13.2	18.6	26.1	42.1

probability			1		99	
weight	60.1	71.2	79.3	87.1	91.2	100

- ▶ There exist *qualitative* explanations for this phenomenon.
- We propose a quantitative explanation based on the granularity idea.

Idea: "Distinguishable" Probabilities

- For decision making, most people do not estimate probabilities as numbers.
- Most people estimate probabilities with "fuzzy" concepts like (low, medium, high).
- The discretization converts a possibly infinite number of probabilities to a finite number of values.
- The discrete scale is formed by probabilities which are distinguishable from each other.
 - 10% chance of rain is distinguishable from a 50% chance of rain, but
 - 51% chance of rain is not distinguishable from a 50% chance of rain.

Distinguishable Probabilities: Formalization

- ▶ In general, if out of *n* observations, the event was observed in *m* of them, we estimate the probability as the ratio $\frac{m}{n}$.
- ► The expected value of the frequency is equal to *p*, and that the standard deviation of this frequency is equal to

$$\sigma = \sqrt{\frac{p \cdot (1 - p)}{n}}.$$

- ▶ By the Central Limit Theorem, for large *n*, the distribution of frequency is very close to the normal distribution.
- For normal distribution, all values are within 2–3 standard deviations of the mean, i.e. within the interval $(p k_0 \cdot \sigma, p + k_0 \cdot \sigma)$.
- So, two probabilities p and p' are distinguishable if the corresponding intervals do not intersect:

$$(p - k_0 \cdot \sigma, p + k_0 \cdot \sigma) \cap (p' - k_0 \cdot \sigma', p' + k_0 \cdot \sigma') = \emptyset$$

► The smallest difference p' - p is when $p + k_0 \cdot \sigma = p' - k_0 \cdot \sigma'$.

Formalization (cont-d)

- ▶ When *n* is large, *p* and *p'* are close to each other and $\sigma' \approx \sigma$.
- Substituting σ for σ' into the above equality, we conclude

$$p' \approx p + 2k_0 \cdot \sigma = p + 2k_0 \cdot \sqrt{\frac{p \cdot (1-p)}{n}}.$$

So, we have distinguishable probabilities

$$p_1 < p_2 < \ldots < p_m$$
, where $p_{i+1} \approx p_i + 2k_0 \cdot \sqrt{\frac{p_i \cdot (1 - p_i)}{n}}$.

- We need to select a weight (subjective probability) based only on the level i.
- ▶ When we have m levels, we thus assign m probabilities $w_1 < \ldots < w_m$.
- ▶ All we know is that $w_1 < ... < w_m$.
- There are many possible tuples with this property.
- We have no reason to assume that some tuples are more probable than others.

Analysis (cont-d)

- It is thus reasonable to assume that all these tuples are equally probable.
- ▶ Due to the formulas for complete probability, the resulting probability w_i is the average of values w_i corresponding to all the tuples: $E[w_i | 0 < w_1 < ... < w_m = 1]$.
- ► These averages are known: $w_i = \frac{i}{m}$.
- So, to probability p_i , we assign weight $g(p_i) = \frac{l}{m}$.
- ▶ For $p_{i+1} \approx p_i + 2k_0 \cdot \sqrt{\frac{p \cdot (1-p)}{n}}$, we have

$$g(p_i) = \frac{i}{m}$$
 and $g(p_{i+1}) = \frac{i+1}{m}$.

Analysis (cont-d)

- ▶ Since $p = p_i$ and $p' = p_{i+1}$ are close, p' p is small:
 - we can expand g(p') = g(p + (p' p)) in Taylor series and keep only linear terms
 - $g(p') \approx g(p) + (p'-p) \cdot g'(p)$, where $g'(p) = \frac{dg}{dp}$ denotes the derivative of the function g(p).
 - ► Thus, $g(p') g(p) = \frac{1}{m} = (p' p) \cdot g'(p)$.
- ▶ Substituting the expression for p' p into this formula, we conclude

$$\frac{1}{m}=2k_0\cdot\sqrt{\frac{p\cdot(1-p)}{n}}\cdot g'(p).$$

- ► This can be rewritten as $g'(p) \cdot \sqrt{p \cdot (1-p)} = \text{const for some constant.}$
- ▶ Thus, $g'(p) = \text{const} \cdot \frac{1}{\sqrt{p \cdot (1-p)}}$ and, since g(0) = 0 and g(1) = 1, we get $g(p) = \frac{2}{\pi} \cdot \arcsin(\sqrt{p})$.

Assigning Weights to Probabilities: First Try

- For each probability $p_i \in [0, 1]$, assign the weight $w_i = g(p_i) = \frac{2}{\pi} \cdot \arcsin(\sqrt{p_i})$
- ▶ Here is how these weights compare with Kahneman's empirical weights \widetilde{w}_i :

p _i	0	1	2	5	10	20	50
\widetilde{w}_i	0	5.5	8.1	13.2	18.6	26.1	42.1
$w_i = g(p_i)$	0	6.4	9.0	14.4	20.5	29.5	50.0

p_i	80	90	95	98	99	100
	60.1		l .	1		
$w_i = g(p_i)$	70.5	79.5	85.6	91.0	93.6	100

How to Get a Better Fit between Theoretical and Observed Weights

- All we observe is which action a person selects.
- Based on selection, we cannot uniquely determine weights.
- ► An empirical selection consistent with weights w_i is equally consistent with weights $w'_i = \lambda \cdot w_i$.
- First-try results were based on constraints that g(0) = 0 and g(1) = 1 which led to a perfect match at both ends and lousy match "on average."
- Instead, select λ using Least Squares such that $\sum_{i} \left(\frac{\lambda \cdot w_{i} \widetilde{w}_{i}}{w_{i}} \right)^{2} \text{ is the smallest possible.}$
- ▶ Differentiating with respect to λ and equating to zero:

$$\sum_{i} \left(\lambda - \frac{\widetilde{w}_{i}}{w_{i}} \right) = 0, \text{ so } \lambda = \frac{1}{m} \cdot \sum_{i} \frac{\widetilde{w}_{i}}{w_{i}}.$$

Second Example: Result

- ▶ For the values being considered, $\lambda = 0.910$
- For $w_i' = \lambda \cdot w_i = \lambda \cdot g(p_i)$

$\widetilde{\mathbf{w}}_{i}$	0	5.5	8.1	13.2	18.6	26.1	42.1
$w_i' = \lambda \cdot g(p_i)$	0	5.8	8.2	13.1	18.7	26.8	45.5
$w_i = g(p_i)$	0	6.4	9.0	14.4	20.5	29.5	50.0

'	60.1					
$w_i' = \lambda \cdot g(p_i)$	64.2	72.3	77.9	82.8	87.4	91.0
$w_i = g(p_i)$	70.5	79.5	85.6	91.0	93.6	100

- For most i, the difference between the granule-based weights w'_i and empirical weights \widetilde{w}_i is small.
- Conclusion: Granularity explains Kahneman and Tversky's empirical decision weights.

Part 3: Third Example of Seemingly Irrational Decision Making – Use of Fuzzy Techniques

Third Example: Fuzzy Uncertainty

- Fuzzy logic formalizes imprecise properties P like "big" or "small" used in experts' statements.
- ▶ It uses the degree $\mu_P(x)$ to which x satisfies P:
 - $\mu_P(x) = 1$ means that we are confident that x satisfies P;
 - $\mu_P(x) = 0$ means that we are confident that x does not satisfy P;
 - 0 < µ_P(x) < 1 means that there is *some* confidence that x satisfies P, and some confidence that it doesn't.
- $\mu_P(x)$ is typically obtained by using a *Likert scale*:
 - ▶ the expert selects an integer m on a scale from 0 to n;
 - then we take $\mu_P(x) := m/n$;
- ► This way, we get values $\mu_P(x) = 0, 1/n, 2/n, \dots, n/n = 1$.
- ▶ To get a more detailed description, we can use a larger *n*.

Fuzzy Techniques as an Example of Seemingly Irrational Behavior

- Fuzzy tools are effectively used to handle imprecise (fuzzy) expert knowledge in control and decision making.
- ► On the other hand, we know that rational decision makers should use the traditional utility-based techniques.
- ➤ To explain the empirical success of fuzzy techniques, we need to describe Likert scale selection in utility terms.

Likert Scale in Terms of Traditional Decision Making

- Suppose that we have a Likert scale with n + 1 labels 0, 1, 2, ..., n, ranging from the smallest to the largest.
 - We mark the smallest end of the scale with x₀ and begin to traverse.
 - As x increases, we find a value belonging to label 1 and mark this threshold point by x₁.
 - ► This continues to the largest end of the scale which is marked by x_{n+1}
- As a result, we divide the range $[\underline{X}, \overline{X}]$ of the original variable into n + 1 intervals $[x_0, x_1], \dots, [x_n, x_{n+1}]$:
 - \triangleright values from the first interval $[x_0, x_1]$ are marked with label 0;
 - **.**...
 - ▶ values from the (n + 1)-st interval $[x_n, x_{n+1}]$ are marked with label n.
- ► Then, decisions are based only on the label, i.e., only on the interval to which *x* belongs:

$$[x_0, x_1]$$
 or $[x_1, x_2]$ or ... or $[x_n, x_{n+1}]$

Which Decision To Choose?

- ▶ Ideally, we should make a decision based on the actual value of the corresponding quantity x.
- ► This sometimes requires too much computation, so instead of the actual value *x* we only use the label containing *x*.
- ▶ Since we only know the label k to which x belongs, we select $\widetilde{x}_k \in [x_k, x_{k+1}]$ and make a decision based on \widetilde{x}_k .
- ▶ Then, for all x from the interval $[x_k, x_{k+1}]$, we use the decision $d(\widetilde{x}_k)$ based on the value \widetilde{x}_k .
- ▶ We should select intervals $[x_k, x_{k+1}]$ and values \tilde{x}_k for which the expected utility is the largest.

Which Value \tilde{x}_k Should We Choose

- ▶ To find this expected utility, we need to know two things:
 - ▶ the probability of different values of x; described by the probability density function $\rho(x)$;
 - ▶ for each pair of values x' and x, the utility u(x', x) of using a decision d(x') when the actual value is x.
- ▶ In these terms, the expected utility of selecting a value \tilde{x}_k can be described as

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot u(\widetilde{x}_k, x) \, dx.$$

- For each interval $[x_k, x_{k+1}]$, we need to select a decision $d(\tilde{x}_k)$ such that the above expression is maximized.
- ▶ Thus, the overall expected utility is equal to

$$\sum_{k=0}^{n} \max_{\widetilde{x}_{k}} \int_{x_{k}}^{x_{k+1}} \rho(x) \cdot u(\widetilde{x}_{k}, x) \, dx.$$

Equivalent Reformulation In Terms of Disutility

- In the ideal case, for each value x, we should use a decision d(x), and gain utility u(x,x).
- ▶ In practice, we have to use decisions d(x'), and thus, get slightly worse utility values u(x', x).
- ► The corresponding decrease in utility $U(x',x) \stackrel{\text{def}}{=} u(x,x) u(x',x)$ is usually called *disutility*.
- ▶ In terms of disutility, the function u(x',x) has the form

$$u(x',x)=u(x,x)-U(x',x),$$

So, to maximize utility, we select x_1, \ldots, x_n for which the expected disutility attains its smallest possible value:

$$\sum_{k=0}^{n} \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k, x) \, dx \to \min.$$

Membership Function $\mu(x)$ as a Way to Describe Likert Scale

- As we have mentioned, fuzzy techniques use a membership function μ(x) to describe the Likert scale.
- ▶ In our *n*-valued Likert scale:
 - ▶ label $0 = [x_0, x_1]$ corresponds to $\mu(x) = 0/n$,
 - ▶ label 1 = $[x_1, x_2]$ corresponds to $\mu(x) = 1/n$,

 - ▶ label $n = [x_n, x_{n+1}]$ corresponds to $\mu(x) = n/n = 1$.
- ▶ The actual value $\mu(x)$ corresponds to the limit, when n is large, and the width of each interval is narrow.
- ► For large n, x' and x belong to the same narrow interval, and thus, the difference $\Delta x \stackrel{\text{def}}{=} x' x$ is small.
- Let us use this fact to simplify the expression for disutility U(x',x).

Using the Fact that Each Interval Is Narrow

▶ Thus, we can expand $U(x + \Delta x, x)$ into Taylor series in Δx , and keep only the first non-zero term in this expansion.

$$U(x + \Delta x, x) = U_0(x) + U_1(x) \cdot \Delta x + U_2(x) \cdot \Delta x^2 + \dots,$$

- ▶ By definition of disutility, $U_0(x) = U(x,x) = u(x,x) - u(x,x) = 0$
- ▶ Simularly, since disutility is smallest when $x + \Delta x = x$, the first derivative is also zero.
- ▶ So, the first nontrivial term is $U_2(x) \cdot \Delta x^2 \approx U_2(x) \cdot (\widetilde{x}_k x)^2$
- Thus, we need to minimize the expression

$$\sum_{k=0}^n \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) \cdot (\widetilde{x}_k - x)^2 dx.$$

Resulting Formula

 Minimizing the above expression, we conclude that the membership function μ(x) corresponding to the optimal Likert scale is equal to

$$\mu(x) = \frac{\int_{\underline{X}}^{x} (\rho(t) \cdot U_2(t))^{1/3} dt}{\int_{\underline{X}}^{\overline{X}} (\rho(t) \cdot U_2(t))^{1/3} dt}, \text{ where:}$$

where

- ho(x) is the probability density describing the probabilities of different values of x,
- $U_2(x) \stackrel{\text{def}}{=} \frac{1}{2} \cdot \frac{\partial^2 U(x + \Delta x, x)}{\partial^2 (\Delta x)},$
- $U(x',x) \stackrel{\text{def}}{=} u(x,x) u(x',x)$, and
- u(x',x) is the utility of using a decision d(x') corresponding to the value x' in the situation in which the actual value is x.

Resulting Formula (cont-d)

Comment:

- ► The resulting formula only applies to properties like "large" whose values monotonically increase with x.
- We can use a similar formula for properties like "small" which decrease with x.
- For "approximately 0," we separately apply these formulas to both increasing and decreasing parts.
- The resulting membership degrees incorporate both probability and utility information.
- This explains why fuzzy techniques often work better than probabilistic techniques without utility information.

Additional Result: Why in Practice, Triangular Membership Functions are Often Used

- ▶ We have considered a situation in which we have full information about $\rho(x)$ and $U_2(x)$.
- ▶ In practice, we often do not know how $\rho(x)$ and $U_2(x)$ change with x.
- Since we have no reason to expect some values $\rho(x)$ to be larger or smaller, it is natural to assume that $\rho(x) = \text{const}$ and $U_2(x) = \text{const}$.
- ▶ In this case, our formula leads to the linear membership function, going either from 0 to 1 or from 1 to 0.
- This may explain why triangular membership functions formed by two such linear segments – are often successfully used.

Part 4: Applications

Towards Applications

- Most of the above results deal with theoretical foundations of decision making under uncertainty.
- ► In the dissertation, we supplement this theoretical work with examples of practical applications:
 - in business,
 - in engineering,
 - in education, and
 - in developing generic AI decision tools.
- In engineering, we analyzed how quality design improves with the increased computational efficiency.
- This analysis is performed on the example of the ever increasing fuel efficiency of commercial aircraft.

Applications (cont-d)

- In business, we analyzed how the economic notion of a fair price can be translated into algorithms for decision making under interval and fuzzy uncertainty.
- ▶ In *education*, we explain the semi-heuristic Rasch model for predicting student success.
- ▶ In general AI applications, we analyze of how to explain:
 - the current heuristic approach
 - to selecting a proper level of granularity.
- Our example is selecting the basic concept level in concept analysis.

Computational Aspects

- One of the most fundamental types of uncertainty is interval uncertainty.
- In interval uncertainty, the general problem of propagating this uncertainty is NP-hard.
- However, there are cases when feasible algorithms are possible.
- Example: single-use expressions (SUE), when each variable occurs only once in the expression.
- ► In our work, we show that for double-use expressions, the problem is NP-hard.
- We have also developed a feasible algorithm for checking when an expression can be converted into SUE.

Acknowledgments

- My sincere appreciation to the members of my committee: Vladik Kreinovich, Luc Longpré, and Scott A. Starks.
- I also wish to thank:
 - Martine Ceberio and Pat Teller for advice and encouragement,
 - Olga Kosheleva and Christopher Kiekintveld for valuable discussions in decision theory,
 - Olac Fuentes for his guidance, and
 - all Computer Science Department faculty and staff for their hard work and dedication.
- Finally, I wish to thank my wife, Blanca, for all her help and love.

Appendix 1: Applications

Appendix 1.1 Application to Engineering

How Design Quality Improves with Increasing Computational Abilities: General Formulas and Case Study of Aircraft Fuel Efficiency

Outline

- It is known that the problems of optimal design are NP-hard.
- ➤ This means that, in general, a feasible algorithm can only produce close-to-optimal designs.
- The more computations we perform, the better design we can produce.
- In this paper, we theoretically derive the dependence of design quality on computation time.
- We then empirically confirm this dependence on the example of aircraft fuel efficiency.

Formulation of the Problem

- Since 1980s, computer-aided design (CAD) has become ubiquitous in engineering; example: Boeing 777.
- ► The main objective of CAD is to find a design which optimizes the corresponding objective function.
- Example: we optimize fuel efficiency of an aircraft.
- The corresponding optimization problems are non-linear, and such problems are, in general, NP-hard.
- So unless P = NP a feasible algorithm cannot always find the exact optimum, only an approximate one.
- ► The more computations we perform, the better the design.
- It is desirable to quantitatively describe how increasing computational abilities improve the design quality.

Because of NP-Hardness, More Computations Simply Means More Test Cases

- In principle, each design optimization problem can be solved by exhaustive search.
- Let d denote the number of parameters.
- ▶ Let C denote the average number of possible values of a parameter.
- ▶ Then, we need to analyze C^d test cases.
- For large systems (e.g., for an aircraft), we can only test some combinations.
- ▶ NP-hardness means that optimization algorithms to be significantly faster than exponential time C^d.
- This means that, in effect, all possible optimization algorithms boil down to trying many possible test cases.

Enter Randomness

- Increasing computational abilities mean that we can test more cases.
- Thus, by increasing the scope of our search, we will hopefully find a better design.
- Since we cannot do significantly better than with a simple search,
 - we cannot meaningfully predict whether the next test case will be better or worse,
 - because if we could, we would be able to significantly decrease the search time.
- The quality of the next test case cannot be predicted and is, in this sense, a random variable.

Which Random Variable?

- Many different factors affect the quality of each individual design.
- ▶ Usually, the distribution of the resulting effect of several independent random factors is close to Gaussian.
- This fact is known as the Central Limit Theorem.
- Thus, the quality of a (randomly selected) individual design is normally distributed, with some μ and σ.
- After we test n designs, the quality of the best-so-far design is $x = \max(x_1, \dots, x_n)$.
- ▶ We can reduce the case of y_i with $\mu = 0$ and $\sigma = 1$: namely, $x_i = \mu + \sigma \cdot y_i$ hence $x = \mu + \sigma \cdot y$, where

$$y \stackrel{\mathrm{def}}{=} \max(y_1,\ldots,y_n).$$

Let Us Use Max-Central Limit Theorem

- ► For large *n*, *y*'s cdf is $F(y) \approx F_{EV}\left(\frac{y-\mu_n}{\sigma_n}\right)$, where:
 - $F_{EV}(y) \stackrel{\text{def}}{=} \exp(-\exp(-y))$ (Gumbel distribution),
 - $\mu_n \stackrel{\text{def}}{=} \Phi^{-1} \left(1 \frac{1}{n} \right)$, where $\Phi(y)$ is cdf of N(0, 1),
 - $\sigma_n \stackrel{\text{def}}{=} \Phi^{-1} \left(1 \frac{1}{n} \cdot e^{-1} \right) \Phi^{-1} \left(1 \frac{1}{n} \right).$
- ▶ Thus, $y = \mu_n + \sigma_n \cdot \xi$, where ξ is distributed according to the Gumbel distribution.
- ▶ The mean of ξ is the Euler's constant $\gamma \approx$ 0.5772.
- ▶ Thus, the mean value m_n of y is equal to $\mu_n + \gamma \cdot \sigma_n$.
- ▶ For large n, we get asymptotically $m_n \sim \gamma \cdot \sqrt{2 \ln(n)}$.
- ► Hence the mean value e_n of $x = \mu + \sigma \cdot y$ is asymptotically equal to $e_n \sim \mu + \sigma \cdot \gamma \cdot \sqrt{2 \ln(n)}$.

Resulting Formula: Let Us Test It

- Situation: we test n different cases to find the optimal design.
- ► Conclusion: the quality e_n of the resulting design increases with n as

$$e_n \sim \mu + \sigma \cdot \gamma \cdot \sqrt{2 \ln(n)}$$
.

- ► We test this formula: on the example of the average fuel efficiency E of commercial aircraft.
- Empirical fact: E changes with time T as

$$E = \exp(a + b \cdot \ln(T)) = C \cdot T^b$$
, for $b \approx 0.5$.

▶ Question: can our formula $e_n \sim \mu + \sigma \cdot \gamma \cdot \sqrt{2 \ln(n)}$ explain this empirical dependence?

How to Apply Our Theoretical Formula to This Case?

- ► The formula $q \sim \mu + \sigma \cdot \gamma \cdot \sqrt{2 \ln(n)}$ describes how the quality changes with the # of computational steps n.
- ▶ In the case study, we know how it changes with time *T*.
- According to *Moore's law*, the computational speed grows exponentially with time T: $n \approx \exp(c \cdot T)$.
- Crudely speaking, the computational speed doubles every two years.
- ▶ When $n \approx \exp(c \cdot T)$, we have $\ln(n) \sim T$; thus,

$$q \approx a + b \cdot \sqrt{T}$$
.

► This is exactly the empirical dependence that we actually observe.

Caution

- Idea: cars also improve their fuel efficiency.
- ► Fact: the dependence of their fuel efficiency on time is piece-wise constant.
- Explanation: for cars, changes are driven mostly by federal and state regulations.
- Result: these changes have little to do with efficiency of Computer-Aided design.

Appendix 1.2 Application to Business

Towards Decision Making under Interval, Set-Valued, Fuzzy, and Z-Number Uncertainty: A Fair Price Approach

Need for Decision Making

- In many practical situations:
 - we have several alternatives, and
 - we need to select one of these alternatives.
- Examples:
 - a person saving for retirement needs to find the best way to invest money;
 - a company needs to select a location for its new plant;
 - a designer must select one of several possible designs for a new airplane;
 - a medical doctor needs to select a treatment for a patient.

Need for Decision Making Under Uncertainty

- Decision making is easier if we know the exact consequences of each alternative selection.
- Often, however:
 - we only have an incomplete information about consequences of different alternative, and
 - we need to select an alternative under this uncertainty.

How Decisions Under Uncertainty Are Made Now

- Traditional decision making assumes that:
 - ▶ for each alternative a.
 - we know the probability $p_i(a)$ of different outcomes i.
- It can be proven that:
 - preferences of a rational decision maker can be described by *utilities u_i* so that
 - an alternative a is better if its expected utility $\overline{u}(a) \stackrel{\text{def}}{=} \sum_i p_i(a) \cdot u_i$ is larger.

Hurwicz Optimism-Pessimism Criterion

- Often, we do not know these probabilities p_i.
- For example, sometimes:
 - we only know the range $[\underline{u}, \overline{u}]$ of possible utility values, but
 - we do not know the probability of different values within this range.
- ▶ It has been shown that in this case, we should select an alternative s.t. $\alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u} \rightarrow \text{max}$.
- Here, α_H ∈ [0,1] described the optimism level of a decision maker:
 - $\alpha_H = 1$ means optimism;
 - $\alpha_H = 0$ means pessimism;
 - $0 < \alpha_H < 1$ combines optimism and pessimism.

What If We Have Fuzzy Uncertainty? Z-Number Uncertainty?

- There are many semi-heuristic methods of decision making under fuzzy uncertainty.
- These methods have led to many practical applications.
- However, often, different methods lead to different results.
- R. Aliev proposed a utility-based approach to decision making under fuzzy and Z-number uncertainty.
- ► However, there still are many practical problems when it is not fully clear how to make a decision.
- In this talk, we provide foundations for the new methodology of decision making under uncertainty.
- This methodology which is based on a natural idea of a fair price.

Fair Price Approach: An Idea

- When we have a full information about an object, then:
 - we can express our desirability of each possible situation
 - by declaring a price that we are willing to pay to get involved in this situation.
- Once these prices are set, we simply select the alternative for which the participation price is the highest.
- In decision making under uncertainty, it is not easy to come up with a fair price.
- A natural idea is to develop techniques for producing such fair prices.
- ► These prices can then be used in decision making, to select an appropriate alternative.

Case of Interval Uncertainty

- Ideal case: we know the exact gain u of selecting an alternative.
- A more realistic case: we only know the lower bound \underline{u} and the upper bound \overline{u} on this gain.
- ▶ *Comment:* we do not know which values $u \in [\underline{u}, \overline{u}]$ are more probable or less probable.
- This situation is known as interval uncertainty.
- ▶ We want to assign, to each interval $[\underline{u}, \overline{u}]$, a number $P([\underline{u}, \overline{u}])$ describing the fair price of this interval.
- ▶ Since we know that $u \leq \overline{u}$, we have $P([\underline{u}, \overline{u}]) \leq \overline{u}$.
- ▶ Since we know that \underline{u} , we have $\underline{u} \leq P([\underline{u}, \overline{u}])$.

Case of Interval Uncertainty: Monotonicity

- Case 1: we keep the lower endpoint <u>u</u> intact but increase the upper bound.
- This means that we:
 - keeping all the previous possibilities, but
 - we allow new possibilities, with a higher gain.
- ► In this case, it is reasonable to require that the corresponding price not decrease:

if
$$\underline{u} = \underline{v}$$
 and $\overline{u} < \overline{v}$ then $P([\underline{u}, \overline{u}]) \le P([\underline{v}, \overline{v}])$.

- Case 2: we dismiss some low-gain alternatives.
- This should increase (or at least not decrease) the fair price:

if
$$\underline{u} < \underline{v}$$
 and $\overline{u} = \overline{v}$ then $P([\underline{u}, \overline{u}]) \le P([\underline{v}, \overline{v}])$.

Additivity: Idea

- Let us consider the situation when we have two consequent independent decisions.
- We can consider two decision processes separately.
- We can also consider a single decision process in which we select a pair of alternatives:
 - the 1st alternative corr. to the 1st decision, and
 - the 2nd alternative corr. to the 2nd decision.
- If we are willing to pay:
 - the amount u to participate in the first process, and
 - the amount v to participate in the second decision process,
- ▶ then we should be willing to pay u + v to participate in both decision processes.

Additivity: Case of Interval Uncertainty

- About the gain u from the first alternative, we only know that this (unknown) gain is in $[\underline{u}, \overline{u}]$.
- About the gain v from the second alternative, we only know that this gain belongs to the interval $[\underline{v}, \overline{v}]$.
- ► The overall gain u + v can thus take any value from the interval

$$[\underline{u},\overline{u}] + [\underline{v},\overline{v}] \stackrel{\text{def}}{=} \{u + v : u \in [\underline{u},\overline{u}], v \in [\underline{v},\overline{v}]\}.$$

It is easy to check that

$$[\underline{u}, \overline{u}] + [\underline{v}, \overline{v}] = [\underline{u} + \underline{v}, \overline{u} + \overline{v}].$$

► Thus, the additivity requirement about the fair prices takes the form

$$P([\underline{u} + \underline{v}, \overline{u} + \overline{v}]) = P([\underline{u}, \overline{u}]) + P([\underline{v}, \overline{v}]).$$

Fair Price Under Interval Uncertainty

- ▶ By a fair price under interval uncertainty, we mean a function $P([\underline{u}, \overline{u}])$ for which:
 - $\underline{u} \le P([\underline{u}, \overline{u}]) \le \overline{u}$ for all u (conservativeness);
 - if $\underline{u} = \underline{v}$ and $\overline{u} < \overline{v}$, then $P([\underline{u}, \overline{u}]) \le P([\underline{v}, \overline{v}])$ (monotonicity);
 - (additivity) for all \underline{u} , \overline{u} , \underline{v} , and \overline{v} , we have

$$P([\underline{u}+\underline{v},\overline{u}+\overline{v}])=P([\underline{u},\overline{u}])+P([\underline{v},\overline{v}]).$$

Theorem: Each fair price under interval uncertainty has the form

$$P([\underline{u}, \overline{u}]) = \alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u} \text{ for some } \alpha_H \in [0, 1].$$

Comment: we thus get a new justification of Hurwicz optimism-pessimism criterion.

Proof: Main Ideas

- ▶ Due to monotonicity, P([u, u]) = u.
- ▶ Due to monotonicity, $\alpha_H \stackrel{\text{def}}{=} P([0,1]) \in [0,1]$.
- ► For [0,1] = [0,1/n] + ... + [0,1/n] (*n* times), additivity implies $\alpha_H = n \cdot P([0,1/n])$, so $P([0,1/n]) = \alpha_H \cdot (1/n)$.
- ► For [0, m/n] = [0, 1/n] + ... + [0, 1/n] (*m* times), additivity implies $P([0, m/n]) = \alpha_H \cdot (m/n)$.
- For each real number r, for each n, there is an m s.t. $m/n \le r \le (m+1)/n$.
- Monotonicity implies $\alpha_H \cdot (m/n) = P([0, m/n]) \le P([0, r]) \le P([0, (m+1)/n]) = \alpha_H \cdot ((m+1)/n).$
- ▶ When $n \to \infty$, $\alpha_H \cdot (m/n) \to \alpha_H \cdot r$ and $\alpha_H \cdot ((m+1)/n) \to r$, hence $P([0,r]) = \alpha_H \cdot r$.
- ► For $[\underline{u}, \overline{u}] = [\underline{u}, \underline{u}] + [0, \overline{u} \underline{u}]$, additivity implies $P([\underline{u}, \overline{u}]) = \underline{u} + \alpha_H \cdot (\overline{u} \underline{u})$. Q.E.D.

Case of Set-Valued Uncertainty

- In some cases:
 - ▶ in addition to knowing that the actual gain belongs to the interval $[u, \overline{u}]$,
 - we also know that some values from this interval cannot be possible values of this gain.
- For example:
 - if we buy an obscure lottery ticket for a simple prize-or-no-prize lottery from a remote country,
 - we either get the prize or lose the money.
- In this case, the set of possible values of the gain consists of two values.
- Instead of a (bounded) interval of possible values, we can consider a general bounded set of possible values.

Fair Price Under Set-Valued Uncertainty

- ▶ We want a function P that assigns, to every bounded closed set S, a real number P(S), for which:
 - $P([\underline{u}, \overline{u}]) = \alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u}$ (conservativeness);
 - P(S+S')=P(S)+P(S'), where $S+S'\stackrel{\mathrm{def}}{=}\{s+s':s\in S,s'\in S'\}$ (additivity).
- ► Theorem: Each fair price under set uncertainty has the form $P(S) = \alpha_H \cdot \sup S + (1 \alpha_H) \cdot \inf S$.
- Proof: idea.
 - $\{\underline{s}, \overline{s}\} \subseteq S \subseteq [\underline{s}, \overline{s}]$, where $\underline{s} \stackrel{\text{def}}{=} \inf S$ and $\underline{s} \stackrel{\text{def}}{=} \sup S$;
 - thus, $[2\underline{s}, 2\overline{s}] = \{\underline{s}, \overline{s}\} + [\underline{s}, \overline{s}] \subseteq S + [\underline{s}, \overline{s}] \subseteq S + [\underline{s}, \overline{s}] \subseteq S + [\underline{s}, \overline{s}] = [2\underline{s}, 2\overline{s}];$
 - so $S + [\underline{s}, \overline{s}] = [2\underline{s}, 2\overline{s}]$, hence $P(S) + P([\underline{s}, \overline{s}]) = P([2\underline{s}, 2\overline{s}])$, and

$$P(S) = (\alpha_H \cdot (2\overline{s}) + (1 - \alpha_H) \cdot (2\underline{s})) - (\alpha_H \cdot \overline{s} + (1 - \alpha_H) \cdot \underline{s}).$$

Crisp Z-Numbers, Z-Intervals, and Z-Sets

- Until now, we assumed that we are 100% certain that the actual gain is contained in the given interval or set.
- In reality, mistakes are possible.
- ▶ Usually, we are only certain that u belongs to the interval or set with some probability $p \in (0,1)$.
- ▶ A pair of information and a degree of certainty about this this info is what L. Zadeh calls a *Z-number*.
- ▶ We will call a pair (u, p) consisting of a (crisp) number and a (crisp) probability a crisp Z-number.
- ▶ We will call a pair $([\underline{u}, \overline{u}], p)$ consisting of an interval and a probability a *Z-interval*.
- We will call a pair (S, p) consisting of a set and a probability a Z-set.

Additivity for Z-Numbers

Situation:

- for the first decision, our degree of confidence in the gain estimate u is described by some probability p;
- ▶ for the 2nd decision, our degree of confidence in the gain estimate *v* is described by some probability *q*.
- ► The estimate u + v is valid only if both gain estimates are correct.
- ▶ Since these estimates are independent, the probability that they are both correct is equal to *p* · *q*.
- ► Thus, for crisp Z-numbers (u, p) and (v, q), the sum is equal to $(u + v, p \cdot q)$.
- ▶ Similarly, for Z-intervals ($[\underline{u}, \overline{u}], p$) and ($[\underline{v}, \overline{v}], q$), the sum is equal to ($[\underline{u} + \underline{v}, \overline{u} + \overline{v}], p \cdot q$).
- ► For Z-sets, $(S, p) + (S', q) = (S + S', p \cdot q)$.

Fair Price for Z-Numbers and Z-Sets

- ▶ We want a function P that assigns, to every crisp Z-number (u, p), a real number P(u, p), for which:
 - P(u, 1) = u for all u (conservativeness);
 - for all u, v, p, and q, we have $P(u+v,p\cdot q)=P(u,p)+P(v,q) \text{ (additivity)};$
 - the function P(u, p) is continuous in p (*continuity*).
- ► Theorem: Fair price under crisp Z-number uncertainty has the form $P(u, p) = u k \cdot \ln(p)$ for some k.
- Theorem: For Z-intervals and Z-sets,

$$P(S,p) = \alpha_H \cdot \sup S + (1 - \alpha_H) \cdot \inf S - k \cdot \ln(p).$$

► *Proof:* (u, p) = (u, 1) + (0, p); for continuous $f(p) \stackrel{\text{def}}{=} (0, p)$, additivity means $f(p \cdot q) = f(p) + f(q)$, so

$$f(p) = -k \cdot \ln(p)$$
.

Case When Probabilities Are Known With Interval Or Set-Valued Uncertainty

- We often do not know the exact probability p.
- ▶ Instead, we may only know the interval $[\underline{p}, \overline{p}]$ of possible values of p.
- ▶ More generally, we know the set P of possible values of p.
- ▶ If we only know that $p \in [\underline{p}, \overline{p}]$ and $q \in [\underline{q}, \overline{q}]$, then possible values of $p \cdot q$ form the interval

$$\left[\,\underline{p}\cdot\underline{q},\overline{p}\cdot\overline{q}\,\right]$$
.

▶ For sets P and Q, the set of possible values $p \cdot q$ is the set

$$\mathcal{P} \cdot \mathcal{Q} \stackrel{\text{def}}{=} \{ p \cdot q : p \in \mathcal{P} \text{ and } q \in \mathcal{Q} \}.$$

Fair Price When Probabilities Are Known With Interval Uncertainty

- ▶ We want a function P that assigns, to every Z-number $(u, [\underline{p}, \overline{p}])$, a real number $P(u, [\underline{p}, \overline{p}])$, so that:
 - $P(u,[p,p]) = u k \cdot \ln(p)$ (conservativeness);
 - $P(u+v, [\underline{p} \cdot \underline{q}, \overline{p} \cdot \overline{q}]) = P(u, [\underline{p}, \overline{p}]) + P(v, [\underline{q}, \overline{q}])$ (additivity);
 - $P(u, [\underline{p}, \overline{p}])$ is continuous in \underline{p} and \overline{p} (continuity).
- Theorem: Fair price has the form

$$P\left(u, \left[\underline{p}, \overline{p}\right]\right) = u - (k - \beta) \cdot \ln\left(\overline{p}\right) - \beta \cdot \ln\left(\underline{p}\right) \text{ for some } \beta \in [0, 1].$$

- For set-valued probabilities, we similarly have $P(u, \mathcal{P}) = u (k \beta) \cdot \ln(\sup \mathcal{P}) \beta \cdot \ln(\inf \mathcal{P})$.
- ▶ For Z-sets and Z-intervals, we have P(S, P) =

$$\alpha_H \cdot \sup S + (1 - \alpha_H) \cdot \inf S - (k - \beta) \cdot \ln(\sup P) - \beta \cdot \ln(\inf P).$$

Proof

- ▶ By additivity, P(S, P) = P(S, 1) + P(0, P), so it is sufficient to find P(0, P).
- For intervals, $P(0, [\underline{p}, \overline{p}]) = P(0, \overline{p}) + P(0, [p, 1])$, for $p \stackrel{\text{def}}{=} \underline{p}/\overline{p}$.
- ▶ For $f(p) \stackrel{\text{def}}{=} P(0, [p, 1])$, additivity means

$$f(p\cdot q)=f(p)\cdot f(q).$$

- ▶ Thus, $f(p) = -\beta \cdot \ln(p)$ for some β .
- ▶ Hence, $P(0, [\underline{p}, \overline{p}]) = -k \cdot \ln(\overline{p}) \beta \cdot \ln(p)$.
- ▶ Since $ln(p) = ln(\overline{p}) ln(p)$, we get the desired formula.
- ► For sets \mathcal{P} , with $\underline{p} \stackrel{\text{def}}{=} \inf \mathcal{P}$ and $\overline{p} \stackrel{\text{def}}{=} \sup \mathcal{P}$, we have $\mathcal{P} \cdot [\underline{p}, \overline{p}] = [\underline{p}^2, \overline{p}^2]$, so $P(0, \mathcal{P}) + P(0, [\underline{p}, \overline{p}]) = P(0, [\underline{p}^2, \overline{p}^2])$.
- ▶ Thus, from known formulas for intervals $[\underline{p}, \overline{p}]$, we get formulas for sets \mathcal{P} .

Case of Fuzzy Numbers

- An expert is often imprecise ("fuzzy") about the possible values.
- For example, an expert may say that the gain is small.
- ➤ To describe such information, L. Zadeh introduced the notion of fuzzy numbers.
- For fuzzy numbers, different values u are possible with different degrees $\mu(u) \in [0, 1]$.
- ▶ The value w is a possible value of u + v if:
 - for some values u and v for which u + v = w,
 - u is a possible value of 1st gain, and
 - v is a possible value of 2nd gain.
- If we interpret "and" as min and "or" ("for some") as max, we get Zadeh's extension principle:

$$\mu(w) = \max_{u,v: u+v=w} \min(\mu_1(u), \mu_2(v)).$$

Case of Fuzzy Numbers (cont-d)

- ► Reminder: $\mu(w) = \max_{u,v:u+v=w} \min(\mu_1(u), \mu_2(v)).$
- \blacktriangleright This operation is easiest to describe in terms of α -cuts

$$\mathbf{u}(\alpha) = [\mathbf{u}^{-}(\alpha), \mathbf{u}^{+}(\alpha)] \stackrel{\text{def}}{=} \{\mathbf{u} : \mu(\mathbf{u}) \ge \alpha\}.$$

▶ Namely, $\mathbf{w}(\alpha) = \mathbf{u}(\alpha) + \mathbf{v}(\alpha)$, i.e.,

$$w^{-}(\alpha) = u^{-}(\alpha) + v^{-}(\alpha)$$
 and $w^{+}(\alpha) = u^{+}(\alpha) + v^{+}(\alpha)$.

For product (of probabilities), we similarly get

$$\mu(\mathbf{w}) = \max_{\mathbf{u}, \mathbf{v}: \mathbf{u} \cdot \mathbf{v} = \mathbf{w}} \min(\mu_1(\mathbf{u}), \mu_2(\mathbf{v})).$$

▶ In terms of α -cuts, we have $\mathbf{w}(\alpha) = \mathbf{u}(\alpha) \cdot \mathbf{v}(\alpha)$, i.e.,

$$\mathbf{w}^{-}(\alpha) = \mathbf{u}^{-}(\alpha) \cdot \mathbf{v}^{-}(\alpha)$$
 and $\mathbf{w}^{+}(\alpha) = \mathbf{u}^{+}(\alpha) \cdot \mathbf{v}^{+}(\alpha)$.

Fair Price Under Fuzzy Uncertainty

- We want to assign, to every fuzzy number s, a real number P(s), so that:
 - if a fuzzy number s is located between <u>u</u> and <u>u</u>, then <u>u</u> ≤ P(s) ≤ <u>u</u> (conservativeness);
 - P(u + v) = P(u) + P(v) (additivity);
 - if for all α , $s^-(\alpha) \le t^-(\alpha)$ and $s^+(\alpha) \le t^+(\alpha)$, then we have $P(s) \le P(t)$ (monotonicity);
 - if μ_n uniformly converges to μ , then $P(\mu_n) \rightarrow P(\mu)$ (continuity).
- Theorem. The fair price is equal to

$$P(s) = s_0 + \int_0^1 k^-(\alpha) \, ds^-(\alpha) - \int_0^1 k^+(\alpha) \, ds^+(\alpha)$$
 for some $k^{\pm}(\alpha)$.

Discussion

▶ $\int f(x) \cdot dg(x) = \int f(x) \cdot g'(x) dx$ for a generalized function g'(x), hence for generalized $K^{\pm}(\alpha)$, we have:

$$P(s) = \int_0^1 K^-(\alpha) \cdot s^-(\alpha) d\alpha + \int_0^1 K^+(\alpha) \cdot s^+(\alpha) d\alpha.$$

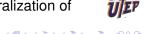
Conservativeness means that

$$\int_0^1 K^-(\alpha) d\alpha + \int_0^1 K^+(\alpha) d\alpha = 1.$$

▶ For the interval $[\underline{u}, \overline{u}]$, we get

$$P(s) = \left(\int_0^1 K^-(\alpha) \, d\alpha\right) \cdot \underline{u} + \left(\int_0^1 K^+(\alpha) \, d\alpha\right) \cdot \overline{u}.$$

- ► Thus, Hurwicz optimism-pessimism coefficient α_H is equal to $\int_0^1 K^+(\alpha) d\alpha$.
- In this sense, the above formula is a generalization of Hurwicz's formula to the fuzzy case.



Proof

- ▶ Define $\mu_{\gamma,u}(0) = 1$, $\mu_{\gamma,u}(x) = \gamma$ for $x \in (0, u]$, and $\mu_{\gamma,u}(x) = 0$ for all other x.
- ▶ $\mathbf{s}_{\gamma,u}(\alpha) = [0,0]$ for $\alpha > \gamma, \mathbf{s}_{\gamma,u}(\alpha) = [0,u]$ for $\alpha \leq \gamma$.
- ▶ Based on the α -cuts, one check that $s_{\gamma,u+v} = s_{\gamma,u} + s_{\gamma,v}$.
- ► Thus, due to additivity, $P(s_{\gamma,u+v}) = P(s_{\gamma,u}) + P(s_{\gamma,v})$.
- ▶ Due to monotonicity, $P(s_{\gamma,u}) \uparrow$ when $u \uparrow$.
- ▶ Thus, $P(s_{\gamma,u}) = k^+(\gamma) \cdot u$ for some value $k^+(\gamma)$.
- Let us now consider a fuzzy number s s.t. $\mu(x) = 0$ for x < 0, $\mu(0) = 1$, then $\mu(x)$ continuously $\downarrow 0$.
- ▶ For each sequence of values $\alpha_0 = 1 < \alpha_1 < \alpha_2 < \ldots < \alpha_{n-1} < \alpha_n = 1$, we can form an approximation s_n :
 - $s_n^-(\alpha) = 0$ for all α ; and
 - when $\alpha \in [\alpha_i, \alpha_{i+1})$, then $s_n^+(\alpha) = s^+(\alpha_i)$.

Proof (cont-d)

- ► Here, $s_n = s_{\alpha_{n-1},s^+(\alpha_{n-1})} + s_{\alpha_{n-2},s^+(\alpha_{n-2})-s^+(\alpha_{n-1})} + \ldots + s_{\alpha_1,\alpha_1-\alpha_2}.$
- ▶ Due to additivity, $P(s_n) = k^+(\alpha_{n-1}) \cdot s^+(\alpha_{n-1}) + k^+(\alpha_{n-2}) \cdot (s^+(\alpha_{n-2}) s^+(\alpha_{n-1})) + \ldots + k^+(\alpha_1) \cdot (\alpha_1 \alpha_2).$
- ► This is minus the integral sum for $\int_0^1 k^+(\gamma) ds^+(\gamma)$.
- ▶ Here, $s_n \to s$, so $P(s) = \lim P(s_n) = \int_0^1 k^+(\gamma) ds^+(\gamma)$.
- ▶ Similarly, for fuzzy numbers s with $\mu(x) = 0$ for x > 0, we have $P(s) = \int_0^1 k^-(\gamma) ds^-(\gamma)$ for some $k^-(\gamma)$.
- ▶ A general fuzzy number g, with α -cuts $[g^-(\alpha), g^+(\alpha)]$ and a point g_0 at which $\mu(g_0) = 1$, is the sum of g_0 ,
 - a fuzzy number with α -cuts $[0, g^+(\alpha) g_0]$, and
 - a fuzzy number with α -cuts $[g_0 g^-(\alpha), 0]$.
- Additivity completes the proof.

Case of General Z-Number Uncertainty

- In this case, we have two fuzzy numbers:
 - a fuzzy number s which describes the values, and
 - a fuzzy number p which describes our degree of confidence in the piece of information described by s.
- ▶ We want to assign, to every pair (s, p) s.t. p is located on $[p_0, 1]$ for some $p_0 > 0$, a number P(s, p) so that:
 - P(s, 1) is as before (*conservativeness*);
 - $P(u+v,p\cdot q)=P(u,p)+P(v,q)$ (additivity);
 - if $s_n \to s$ and $p_n \to p$, then $P(s_n, p_n) \to P(s, p)$ (continuity).

• Thm:
$$P(s,p) = \int_0^1 K^-(\alpha) \cdot s^-(\alpha) d\alpha + \int_0^1 K^+(\alpha) \cdot s^+(\alpha) d\alpha + \int_0^1 L^-(\alpha) \cdot \ln(p^-(\alpha)) d\alpha + \int_0^1 L^+(\alpha) \cdot \ln(p^+(\alpha)) d\alpha.$$

Conclusions and Future Work

- In many practical situations:
 - we need to select an alternative, but
 - we do not know the exact consequences of each possible selection.
- ▶ We may also know, e.g., that the gain will be somewhat larger than a certain value u₀.
- We propose to make decisions by comparing the fair price corresponding to each uncertainty.
- Future work:
 - apply to practical decision problems;
 - generalize to type-2 fuzzy sets;
 - generalize to the case when we have several pieces of information (s, p).

Appendix 1.3 Application to Education

How Success in a Task Depends on the Skills Level: Two Uncertainty-Based Justifications of a Semi-Heuristic Rasch Model

An Empirically Successful Rasch Model

- For each level of student skills, the student is usually:
 - very successful in solving simple problems,
 - not yet successful in solving problems which are to this student – too complex, and
 - reasonably successful in solving problems which are of the right complexity.
- ➤ To design adequate tests, it is desirable to understand how a success s in a task depends:
 - ightharpoonup on the student's skill level ℓ and
 - on the problem's complexity c.
- ► Empirical *Rasch model* predicts $s = \frac{1}{1 + \exp(c \ell)}$.
- Practitioners, however, are somewhat reluctant to use this formula, since it lacks a deeper justification.

What We Do

- In this talk, we provide two possible justifications for the Basch model.
- The first is a simple fuzzy-based justification which provides a good intuitive explanation for this model.
- This will hopefully enhance its use in teaching practice.
- The second is a somewhat more sophisticated explanation which is:
 - less intuitive but
 - provides a quantitative justification.

First Justification for the Rasch Model

- Let us fix c and consider the dependence $s = g(\ell)$.
- When we change ℓ slightly, to $\ell + \Delta \ell$, the success also changes slightly: $g(\ell + \Delta \ell) \approx g(\ell)$.
- ▶ Thus, once we know $g(\ell)$, it is convenient to store not $g(\ell + \Delta \ell)$, but the difference $g(\ell + \Delta \ell) g(\ell) \approx \frac{dg}{d\ell} \cdot \Delta \ell$.
- ▶ Here, $\frac{dg}{d\ell}$ depends on $s = g(\ell)$: $\frac{dg}{d\ell} = f(s) = f(g(\ell))$.
- ▶ In the absence of skills, when $\ell \approx -\infty$ and $s \approx 0$, adding a little skills does not help much, so $f(s) \approx 0$.
- ▶ For almost perfect skills $\ell \approx +\infty$ and $s \approx 1$, similarly $f(s) \approx 0$.
- So, f(s) is big when s is big $(s \gg 0)$ but not too big $(1 s \gg 0)$.

First Justification for the Rasch Model (cont-d)

- ▶ Rule: f(s) is big when:
 - s is big ($s \gg 0$) but
 - not too big $(1 s \gg 0)$.
- ► Here, "but" means "and", the simplest "and" is the product.
- ▶ The simplest membership function for "big" is $\mu_{\text{big}}(s) = s$.
- ▶ Thus, the degree to which f(s) is big is equal to

$$s\cdot (1-s): \ f(s)=s\cdot (1-s).$$

▶ The equation $\frac{dg}{d\ell} = g \cdot (1-g)$ leads exactly to Rasch's model $g(\ell) = \frac{1}{1 + \exp(c - \ell)}$ for some c.

What If Use min for "and"?

- What if we use a different "and"-operation, for example, min(a, b)?
- Let us show that in this case, we also get a meaningful model.
- Indeed, in this case, the corresponding equation takes the form $\frac{dg}{d\ell} = \min(g, 1 g)$.
- Its solution is:
 - $g(\ell) = C_- \cdot \exp(\ell)$ when $s = g(\ell) \le 0.5$, and
 - $g(\ell) = 1 C_+ \cdot \exp(-\ell)$ when $s = g(\ell) \ge 0.5$.
- In particular, for $C_- = 0.5$, we get a cdf of the Laplace distribution $\rho(x) = \frac{1}{2} \cdot \exp(-|x|)$.
- ► This distribution is used in many applications e.g., to modify the data in large databases to promote privacy.

Towards a Second Justification

- ▶ The success s depends on how much the skills level ℓ exceeds the complexity c of the task: $s = h(\ell c)$.
- ► For each c, we can use the value $h(\ell c)$ to gauge the students' skills.
- ► For different *c*, we get different scales for measuring skills.
- This is similar to having different scales in physics:
 - a change in a measuring unit leads to x' = a ⋅ x; e.g., 2 m = 100 ⋅ 2 cm;
 - ▶ a change in a starting point leads to x' = x + b; e.g., 20° C = (20 + 273)° K.
- ▶ In physics, re-scaling is usually linear, but here, $0 \rightarrow 0$, $1 \rightarrow 1$, so we need a non-linear re-scaling.

How to Describe Not-Necessarily-Linear Re-Scalings

- ▶ If we first apply one reasonable re-scaling, and after that another one, we still get a reasonable re-scaling.
- ► For example, we can first change meters to centimeters, and then replace centimeters with inches.
- Then, the resulting re-scaling from meters to inches is still a linear transformation.
- In mathematical terms, this means that the class of reasonable e-scalings is closed under composition.
- ► Also, if we have a re-scaling, e.g., from C to F, then the "inverse" re-scaling from F to C is also reasonable.
- ► In precise terms, this means that the class of all reasonable re-scalings is invariant under taking the inversion.

How to Describe Re-Scalings (cont-d)

- Thus, we can say that reasonable re-scalings form a transformation group.
- Our goal is computations.
- ▶ In a computer, we can only store finitely many parameters.
- Thus, each re-scaling must be determined by finitely many parameters.
- Such groups are called finite-dimensional.
- So, we need to describe all finite-dimensional transformation groups that contain all linear transformations.
- It is known that all functions from these groups are fractionally-linear $f(s) = \frac{a \cdot s + b}{c \cdot s + d}$.

Resulting Equation

• We consider a transformation s' = f(s) between

$$s = h(\ell - c)$$
 and $s' = h(\ell - c')$.

- We showed that this transformation is fractionally-linear $f(s) = \frac{a \cdot s + b}{c \cdot s + d}$.
- ▶ When s = 0, we should have s' = 0, hence b = 0.
- We can now divide both numerator and denominator by d, then $f(s) = \frac{A \cdot s}{C \cdot s + 1}$.
- When s = 1, we should have s' = 1, so A = C + 1, and $f(s) = \frac{(1 + C) \cdot s}{C \cdot s + 1}$.
- For c' = 0, we thus get

$$h(\ell-c)=\frac{(1+C(c))\cdot h(\ell)}{C(c)\cdot h(\ell)+1}.$$

Solving the Resulting Equation Explains the Rasch Model

We know that

$$h(\ell-c)=\frac{(1+C(c))\cdot h(\ell)}{C(c)\cdot h(\ell)+1}.$$

▶ Differentiating both sides w.r.t. c and taking c = 0, we get a differential equation whose general solution is

$$h(\ell) = \frac{1}{1 + \exp(k \cdot (c - \ell))}.$$

▶ By changing measuring units for ℓ and c to k times smaller ones, we get the Rasch model

$$h(\ell) = \frac{1}{1 + \exp(c - \ell)}.$$

Conclusion

- It has been empirically shown that,
 - ▶ once we know the complexity c of a task, and the skill level ℓ of a student attempting this task,
 - the student's success s is determined by Rasch's formula

$$s=\frac{1}{1+\exp(c-\ell)}.$$

- In this talk, we provide two uncertainty-based justifications for this model:
 - a simpler fuzzy-based justification provides an intuitive semi-qualitative explanation for this formula;
 - a more complex justification provides a quantitative explanation for the Rasch model.

Appendix 3: Proofs

Appendix 3.0: Utility Value

- Let A be any alternative such that $A_0 < A < A_1$; then:
 - as p increases from 0, L(p) < A;
 - then, at some point, L(p) > A;
 - So, there is a threshold separating values for which L(p) < A from the values for which L(p) > A;
 - this threshold is called the utility of alternative A:

$$u(A) \stackrel{def}{=} \sup\{p : L(p) < A\} = \inf\{p : L(p) > A\}$$

▶ Here, for every ε > 0, we have

$$L(u(A) - \varepsilon) < A < L(u(A) - \varepsilon).$$

In this sense, the alternative A is (almost) equivalent to L(u(A)); we will denote this almost equivalence by

$$A \equiv L(u(A)).$$

Appendix 3.0: Almost Uniqueness of Utility

- ► The definition of utility u depends on the selection of two fixed alternatives A₀ and A₁.
- What if we use different alternatives A'₀ and A'₁?
- ▶ By definition of utility, every alternative A is equivalent to a lottery L(u(A)) in which we get A_1 with probability u(A) and A_0 with probability 1 u(A).
- For simplicity, let us assume that $A'_0 < A_0 < A_1 < A'_1$. Then, for the utility u', we get $A_0 \equiv L'(u'(A_0))$ and $A_1 \equiv L'(u'(A_1))$.

Appendix 3.0: Almost Uniqueness of Utility

- So, the alternative A is equivalent to a complex lottery in which:
 - we select A_1 with probability u(A) and A_0 with probability 1 u(A);
 - depending on which of the two alternatives A_i we get, we get A'_1 with probability $u'(A_i)$ and A'_0 with probability $1 u'(A_i)$.
- In this complex lottery, we get A'_1 with probability $u'(A) = u(A) \cdot (u'(A_1) u'(A_0)) + u'(A_0)$.
- ► Thus, the utility u'(A) is related with the utility u(A) by a linear transformation $u' = a \cdot u + b$, with a > 0.

Appendix 3.2: Derivations Related to the Second Example

- ▶ We have $g'(p) \cdot \sqrt{p \cdot (1-p)} = \text{const}$ for some constant.
- ▶ Integrating with p = 0 corresponding to the lowest 0-th level i.e., that g(0) = 0

$$g(p) = \operatorname{const} \cdot \int_0^p \frac{dq}{\sqrt{q \cdot (1-q)}}.$$

- ▶ Introduce a new variable t for which $q = \sin^2(t)$ and
 - $ightharpoonup dq = 2 \cdot \sin(t) \cdot \cos(t) \cdot dt$
 - ▶ $1 p = 1 \sin^2(t) = \cos^2(t)$ and, therefore,

Appendix 3.2: Derivations (cont-d)

- ▶ The lower bound q = 0 corresponds to t = 0
- ▶ the upper bound q = p corresponds to the value t_0 for which $\sin^2(t_0) = p$ i.e., $\sin(t_0) = \sqrt{p}$ and $t_0 = \arcsin(\sqrt{p})$.
- Therefore,

$$g(p) = \operatorname{const} \cdot \int_0^p \frac{dq}{\sqrt{q \cdot (1 - q)}} =$$

$$\operatorname{const} \cdot \int_0^{t_0} \frac{2 \cdot \sin(t) \cdot \cos(t) \cdot dt}{\sin(t) \cdot \cos(t)} = \int_0^{t_0} 2 \cdot dt =$$

$$2 \cdot \operatorname{const} \cdot t_0.$$

Appendix 3.2: Derivations (final)

▶ We know t₀ depends on p, so we get

$$g(p) = 2 \cdot \operatorname{const} \cdot \arcsin(\sqrt{p})$$
.

- We determine the constant by
 - the largest possible probability value p = 1 implies g(1) = 1, and
 - $\arcsin\left(\sqrt{1}\right) = \arcsin(1) = \frac{\pi}{2}$
- Therefore, we conclude that

$$g(p) = \frac{2}{\pi} \cdot \arcsin\left(\sqrt{p}\right).$$

Appendix 3.3: Reformulation In Terms of Disutility

- In the ideal case, for each value x, we should use a decision d(x), and gain utility u(x,x).
- ▶ In practice, we have to use decisions d(x'), and get slightly worse utility values u(x', x).
- ► The corresponding decrease in utility $U(x',x) \stackrel{\text{def}}{=} u(x,x) u(x',x)$ is usually called *disutility*.
- ▶ In terms of disutility, the function u(x',x) has the form

$$u(x',x)=u(x,x)-U(x',x),$$

Appendix 3.3: Reformulation In Terms of Disutility

► Thus, the optimized expression takes the form

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot u(x,x) \, \mathrm{d}x - \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k,x) \, \mathrm{d}x.$$

- ▶ The first integral does not depend on \widetilde{x}_k ; thus, the expression attains its maximum if and only if the second integral attains its minimum.
- The resulting maximum thus takes the form

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot u(x,x) \, dx - \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k,x) \, dx.$$

Appendix 3.3: Reformulation In Terms of Disutility

Thus, we get the form

$$\sum_{k=0}^n \int_{x_k}^{x_{k+1}} \rho(x) \cdot u(x,x) \, dx - \sum_{k=0}^n \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k,x) \, dx.$$

- ► The first sum does not depend on selecting the thresholds.
- ▶ Thus, to maximize utility, we should select the values $x_1, ..., x_n$ for which the second sum attains its smallest possible value:

$$\sum_{k=0}^n \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k, x) dx o \min.$$

Appendix 3.3: Membership Function

- ▶ In an *n*-valued scale:
 - the smallest label 0 corresponds to the value $\mu(x) = 0/n$,
 - the next label 1 corresponds to the value $\mu(x) = 1/n$,

 - the last label *n* corresponds to the value $\mu(x) = n/n = 1$.
- ► Thus, for each *n*:
 - values from the interval $[x_0, x_1]$ correspond to the value $\mu(x) = 0/n$;
 - values from the interval $[x_1, x_2]$ correspond to the value $\mu(x) = 1/n$;

 - ▶ values from the interval $[x_n, x_{n+1}]$ correspond to the value $\mu(x) = n/n = 1$.
- ► The actual value of the membership function $\mu(x)$ corresponds to the limit $n \to \infty$, i.e., in effect, to very large values of n.
- ▶ Thus, in our analysis, we will assume that the number n of labels is huge and thus, that the width of each of n+1 intervals $[x_k, x_{k+1}]$ is very small.

- ▶ The fact that each interval is narrow allows simplification of the expression U(x',x).
- ▶ In the expression U(x', x), both values x' and x belong to the same narrow interval
- ▶ Thus, the difference $\Delta x \stackrel{\text{def}}{=} x' x$ is small.
- So, we can expand $U(x',x) = U(x + \Delta x, x)$ into Taylor series in Δx , and keep only the first non-zero term.
- In general, we have

$$U(x + \Delta, x) = U_0(x) + U_1 \cdot \Delta x + U_2(x) \cdot \Delta x^2 + \dots,$$

where

$$U_0(x) = U(x,x), \quad U_1(x) = \frac{\partial U(x + \Delta x, x)}{\partial (\Delta x)},$$

$$U_2(x) = \frac{1}{2} \cdot \frac{\partial^2 U(x + \Delta x, x)}{\partial^2 (\Delta x)}.$$

- ► Here, by definition of disutility, we get $U_0(x) = U(x,x) = u(x,x) u(x,x) = 0$.
- Since the utility is the largest (and thus, disutility is the smallest) when x' = x, i.e., when $\Delta x = 0$, the derivative $U_1(x)$ is also equal to 0
- Thus, the first non-trivial term corresponds to the second derivative:

$$U(x + \Delta x, x) \approx U_2(x) \cdot \Delta x^2$$

reformulated in terms of \widetilde{x}_k (that needs to be minimized)

$$U(\widetilde{x}_k,x)\approx U_2(x)\cdot(\widetilde{x}_k-x)^2,$$

is substituted into the expression

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k, x) \, dx$$

▶ We need to minimize the integral

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) \cdot (\widetilde{x}_k - x)^2 dx$$

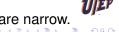
- by differentiating with respect to the unknown \tilde{x}_k and equating the derivative to 0.
- ▶ Thus, we conclude that $\int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) \cdot (\widetilde{x}_k x) dx = 0$,
- ▶ i.e., that

$$\widetilde{x}_k \cdot \int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) dx = \int_{x_k}^{x_{k+1}} x \cdot \rho(x) \cdot U_2(x) dx,$$

and thus, that

$$\widetilde{x}_k = \frac{\int_{x_k}^{x_{k+1}} x \cdot \rho(x) \cdot U_2(x) \, dx}{\int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) \, dx}$$

which can be simplified because the intervals are narrow.



- We denote the midpoint of the interval $[x_k, x_{k+1}]$ by $\overline{x}_k \stackrel{\text{def}}{=} \frac{x_k + x_{k+1}}{2}$, and denote $\Delta x \stackrel{\text{def}}{=} x \overline{x}_k$,
- ▶ then we have $x = \overline{x}_k + \Delta x$.
- Expanding into Taylor series in terms of a small value Δx and keeping only main terms, we get

$$\rho(\mathbf{X}) = \rho(\overline{\mathbf{X}}_k + \Delta \mathbf{X}) = \rho(\overline{\mathbf{X}}_k) + \rho'(\overline{\mathbf{X}}_k) \cdot \Delta \mathbf{X} \approx \rho(\overline{\mathbf{X}}_k),$$

where f'(x) denoted the derivative of a function f(x), and

$$U_2(x) = U_2(\overline{x}_k + \Delta x) = U_2(\overline{x}_k) + U_2'(\overline{x}_k) \cdot \Delta x \approx U_2(\overline{x}_k).$$

▶ Using these new $\rho(\overline{x}_k)$ and $U_2(\overline{x}_k)$, we get

$$\widetilde{X}_{k} = \frac{\rho(\overline{X}_{k}) \cdot U_{2}(\overline{X}_{k}) \cdot \int_{X_{k}}^{X_{k+1}} x \, dx}{\rho(\overline{X}_{k}) \cdot U_{2}(\overline{X}_{k}) \cdot \int_{X_{k}}^{X_{k+1}} dx} = \frac{\int_{X_{k}}^{X_{k+1}} x \, dx}{\int_{X_{k}}^{X_{k+1}} dx} = \frac{\frac{1}{2} \cdot (X_{k+1}^{2} - X_{k}^{2})}{X_{k+1} - X_{k}} = \frac{X_{k+1} + X_{k}}{2} = \overline{X}_{k}.$$

- Substituting $\widetilde{x}_k = \overline{x}_k$ into the integral and understanding that, on the k-th interval, we have $\rho(x) \approx \rho(\overline{x}_k)$ and $U_2(x) \approx U_2(\overline{x}_k)$,
- ▶ we conclude that the integral takes the form

$$\int_{x_k}^{x_{k+1}} \rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot (\overline{x}_k - x)^2 dx =$$

$$\rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot \int_{x_k}^{x_{k+1}} (\overline{x}_k - x)^2 dx.$$

▶ When x goes from x_k to x_{k+1} , the difference Δx between x and the interval's midpoint \overline{x}_k ranges from $-\Delta_k$ to Δ_k , where Δ_k is the interval's half-width:

$$\Delta_k \stackrel{\mathrm{def}}{=} \frac{x_{k+1} - x_k}{2}.$$

▶ In terms of the new variable Δx , the right-hand side of the integral has the form

$$\int_{x_k}^{x_{k+1}} (\overline{x}_k - x)^2 dx = \int_{-\Delta_k}^{\Delta_k} (\Delta x)^2 d(\Delta x) = \frac{2}{3} \cdot \Delta_k^3.$$

► Thus, the integral takes the form

$$\frac{2}{3} \cdot \rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot \Delta_k^3$$
.

➤ The problem of selecting the Likert scale thus becomes the problem of minimizing the sum

$$\frac{2}{3} \cdot \sum_{k=0}^{n} \rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot \Delta_k^3.$$

- Here, $\overline{x}_{k+1} = x_{k+1} + \Delta_{k+1} = (\overline{x}_k + \Delta_k) + \Delta_{k+1} \approx \overline{x}_k + 2\Delta_k$, so $\Delta_k = (1/2) \cdot \Delta \overline{x}_k$, where $\Delta \overline{x}_k \stackrel{\text{def}}{=} \overline{x}_{k+1} \overline{x}_k$.
- Thus, we get the form

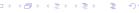
$$\frac{1}{3} \cdot \sum_{k=0}^{n} \rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot \Delta_k^2 \cdot \Delta \overline{x}_k.$$

- ▶ In terms of the membership function, we have $\mu(\overline{x}_k) = k/n$ and $\mu(\overline{x}_{k+1}) = (k+1)/n$.
- ▶ Since the half-width Δ_k is small, we have

$$\frac{1}{n} = \mu(\overline{x}_{k+1}) - \mu(\overline{x}_k) = \mu(\overline{x}_k + 2\Delta_k) - \mu(\overline{x}_k) \approx \mu'(\overline{x}_k) \cdot 2\Delta_k,$$

- ▶ thus, $\Delta_k \approx \frac{1}{2n} \cdot \frac{1}{\mu'(\overline{X}_k)}$.
- Substituting this expression into the sum, we get $\frac{1}{3 \cdot (2n)^2} \cdot I$, where

$$I = \sum_{k=0}^{n} \frac{\rho(\overline{x}_k) \cdot U_2(\overline{x}_k)}{(\mu'(\overline{x}_k))^2} \cdot \Delta \overline{x}_k.$$



▶ The expression I is an integral sum, so when $n \to \infty$, this expression tends to the corresponding integral

$$I = \int \frac{\rho(x) \cdot U_2(x)}{(\mu'(x))^2} \, dx.$$

▶ With respect to the derivative $d(x) \stackrel{\text{def}}{=} \mu'(x)$, we need to minimize the objective function

$$I = \int \frac{\rho(x) \cdot U_2(x)}{d^2(x)} \, dx$$

under the constraint that

$$\int_X^X d(x) dx = \mu(\overline{X}) - \mu(\underline{X}) = 1 - 0 = 1.$$

By using the Lagrange multiplier method, we can reduce to the unconstrained problem of minimizing the functional

$$I = \int \frac{\rho(x) \cdot U_2(x)}{d^2(x)} \, dx + \lambda \cdot \int d(x) \, dx.$$

- ▶ Differentiating with respect to d(x) and equating the derivative to 0, we conclude that $-2 \cdot \frac{\rho(x) \cdot U_2(x)}{d^3(x)} + \lambda = 0$,
- ▶ i.e., that $d(x) = c \cdot (\rho(x) \cdot U_2(x))^{1/3}$ for some constant c.
- ► Thus, $\mu(x) = \int_X^x d(t) dt = c \cdot \int_X^x (\rho(t) \cdot U_2(t))^{1/3} dt$.
- ▶ The constant c must be determined by the condition that $\mu(\overline{X}) = 1$.
- ► Thus, we arrive at the resulting formula.

Appendix 3.3: Resulting Formula

▶ The membership function $\mu(x)$ obtained by using Likert-scale elicitation is equal to

$$\mu(x) = \frac{\int_{\underline{X}}^{x} (\rho(t) \cdot U_2(t))^{1/3} dt}{\int_{\underline{X}}^{\overline{X}} (\rho(t) \cdot U_2(t))^{1/3} dt},$$

where $\rho(x)$ is the probability density describing the probabilities of different values of x,

$$U_2(x) \stackrel{\text{def}}{=} \frac{1}{2} \cdot \frac{\partial^2 U(x + \Delta x, x)}{\partial^2 (\Delta x)},$$

 $U(x',x) \stackrel{\text{def}}{=} u(x,x) - u(x',x)$, and u(x',x) is the utility of using a decision d(x') corresponding to the value x' in the situation in which the actual value is x.

