How to Efficiently Propagate P-Box Uncertainty

Olga Kosheleva and Vladik Kreinovich

University of Texas at El Paso
500 W. University
El Paso, Texas 79968, USA
olgak@utep.edu, vladik@utep.edu
1. Need for uncertainty propagation: a brief reminder

- In some cases, all we need is measurement results.
- However, in most cases, we are interested in something else.
- In this case:
 - we apply some algorithm \(f \) to the measurement results \(x_1, \ldots, x_n \), and
 - we get the desired estimates or recommended control values
 \[
 y = f(x_1, \ldots, x_n).
 \]
- The values \(x_i \) are only known with uncertainty.
- Therefore, the result \(y \) also comes with uncertainty.
- Determining this uncertainty based on uncertainties in \(x_i \) is known as uncertainty propagation.
2. Need for p-boxes

- In the ideal case, we know the probability distribution of each measurement error Δx_i.

- There are many ways to represent a probability distribution: by the probability density function (pdf), by moments, etc.

- Most of these representations are not universal; examples:
 - some distributions do not have finite moments – e.g., Cauchy distribution;
 - some distributions do not have the probability density function – e.g., distribution located at a single value with probability 1.

- The only universal representation is by using a cumulative distribution function (cdf)

\[F_i(X_i) \equiv \text{Prob}(\Delta x_i \leq X_i). \]
3. Need for p-boxes (cont-d)

- In many real-life cases, we only have partial information about the probabilities.
- This means that for each X_i:
 - instead of knowing the exact value $F_i(X_i)$,
 - we only have partial information about $F_i(X_i)$.
- Usually, possible values of $F_i(X_i)$ form an interval $[F_i(X_i), \overline{F}_i(X_i)]$.
- So, a natural way to describe such cases is to have a function that assigns such interval to each X_i.
- This function is known as a *probability box*, or *p-box*, for short.
4. Uncertainty propagation under p-boxes: a challenge

- In the ideal case, when we know all the probability distributions, we can use the usual Monte-Carlo (MC) approach:
 - we simulate each input,
 - we plug in the simulation results into f, getting a sample of y’s;
 - based on this sample, we determine y’s cdf.

- In the case of p-box uncertainty, there are many possible distributions for each x_i.

- Even if we consider 2 values for each of N points X_1, \ldots, X_N, this means 2^N options, which is not feasible.

- There exist feasible algorithms for propagating p-box uncertainty for many important cases.

- However, there is no general efficient algorithm for such propagation.
5. Analysis of the problem

- Probability estimates are usually reasonably accurate.
- Thus, terms which are quadratic (or of higher order) in terms of estimation errors $\Delta F(X) \overset{\text{def}}{=} F(X) - \tilde{F}(x)$ can be safely ignored.
- So, we can assume that the data processing algorithm is linear in terms of $\Delta F(X)$.
- Thus, y is a linear function of the values $F(x)$.
- Instead of all infinitely many values $F(x)$, we can take values $F(X_i)$ corresponding to a dense grid $X_1 < X_2 < \ldots < X_N$.
- Then, for some a_i, we have:

$$y = a_0 + \sum_{i=1}^{N} a_i \cdot F(X_i).$$
6. What we propose

- For each $i = 0, 1, \ldots, N$, we form $F^{(i)}(X)$ for which:
 - we have $F^{(i)}(X_j) = F(X_j)$ for $j \leq i$, and
 - we have $F^{(i)}(X_j) = \overline{F}(X_j)$ for $j > i$.

- We use Monte-Carlo (or any other) method to find the value $y^{(i)}$ corresponding to $F^{(i)}(X)$.

- Because of linearity, we have $y^{(i)} - y^{(i-1)} = a_i \cdot (\overline{F}(X_i) - \overline{F}(X_i))$, so we can estimate a_i as

$$a_i = \frac{y^{(i)} - y^{(i-1)}}{\overline{F}(X_i) - \overline{F}(X_i)}.$$

- After that, we use the estimate $y^{(0)}$ for $F^{(0)}(X)$ to estimate a_0 as

$$a_0 = y^{(0)} - \sum_{i=1}^{N} \overline{F}(X_i).$$
7. What we propose

- Now, we can estimate the range $[y, \bar{y}]$ of all possible values y for the p-box by solving two linear programming problems:

\[
a_0 + \sum_{i=1}^{N} a_i \cdot F_i \rightarrow \min(\max)
\]

under the conditions

\[
\underline{F}(X_i) \leq F_i \leq \bar{F}(X_i) \text{ and } F_i \leq F_{i+1}.
\]

- This procedure requires $N + 1$ calls to estimating y, which is feasible.

- Linear programming is also feasible: it takes $O(N^{2+\varepsilon})$ computational steps, where $\varepsilon = 1/18$.
8. What if we have several p-box inputs?

- In this case, the linear dependence is over all the values $F_j(X_i)$:

$$y = a_0 + \sum_j t_j, \text{ where } t_j \overset{\text{def}}{=} \sum_i a_{ij} \cdot F_j(X_i).$$

- Here, for each j, we have separate constraints – bounds on F_j and monotonicity.

- Thus, to find $\min y$ and $\max \bar{y}$ of y, it is sufficient to:
 - use linear programming to find $\min t_j$ and $\max \bar{t}_j$ of each t_j, and
 - compute $\underline{y} = a_0 + \sum_j t_j$ and $\bar{y} = a_0 + \sum_j \bar{t}_j$.
9. How many calls to f do we need to reach given accuracy ε

- Let Δ denote the size of $\Delta F(X) = \overline{F}(X) - \underline{F}(X)$.
- So, in linear approximation, the difference $\overline{y} - \underline{y}$ is proportional to Δ.
- Let ε be the relative accuracy with which we want to estimate this difference.
- For example, we can take $\varepsilon = 20\%$:
 - remember, this is accuracy with which we determine accuracy;
 - measuring instrument can have accuracy 10%, but 11.6% accuracy does not make too much practical sense.
- This means that we need absolute accuracy $\varepsilon \cdot \Delta$.
- In general, if we use values at N points, a monotonic function is represented with accuracy $\sim 1/N$.
- Thus, we need to have $N \sim 1/(\varepsilon \cdot \Delta)$.

10. How many calls to f do we need (cont-d)

- Let δ be the accuracy with which we determine each value $y^{(i)}$.
- Linear dependence can be described as $y = b_0 + \sum_i b_i \cdot (F_i - F_{i-1})$.
- Each term in this sum is close to $y^{(i)} - y^{(i-1)}$.
- Thus, the accuracy of each term is approximately equal to δ.
- The standard deviation of the sum of N independent terms grows as \sqrt{N}.
- So, the accuracy with which we determine y is $\delta \cdot \sqrt{N}$.
- Thus, to reach accuracy $\varepsilon \cdot \Delta$, we need to select $\delta = \varepsilon \cdot \Delta / \sqrt{N}$.
- Let M denote the number of calls to f that we use to estimate each $y^{(i)}$.
- In general, M iterations provide relative accuracy $\sim 1/\sqrt{M}$.
11. How many calls to f do we need (cont-d)

- To get $1/\sqrt{M} \sim \delta = \varepsilon \cdot \Delta/\sqrt{N}$, we thus need:

 $$M \sim \varepsilon^{-2} \cdot \Delta^{-2} \cdot N \sim \varepsilon^{-3} \cdot \Delta^{-2} \text{ calls to } f.$$

- We need to compute $N \sim \varepsilon^{-1} \cdot \Delta^{-1}$ values $y^{(i)}$.

- Thus, overall, we need

 $$N \cdot M \sim (\varepsilon^{-1} \cdot \Delta^{-1}) \cdot (\varepsilon^{-3} \cdot \Delta^{-2}) = \varepsilon^{-4} \cdot \Delta^{-3} \text{ calls to } f.$$

- This is indeed feasible.
12. Acknowledgments

This work was supported in part by:

- National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;
- AT&T Fellowship in Information Technology;
- program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and
- a grant from the Hungarian National Research, Development and Innovation Office (NRDI).