Optimized Sampling Frequencies for Weld Reliability Assessments of Long Pipeline Segments

Cesar J. Carrasco¹ and Vladik Kreinovich²

¹Department of Civil Engineering ²Department of Computer Science University of Texas at El Paso 500 W. University El Paso, TX 79968, USA contact email vladik@utep.edu

1. Introduction

- Inspecting pipelines: important problem (economy, environmental dangers).
- How it is done:
 - Engineering part: excavations, ultrasonic (and X-ray) measurements.
 - Statistical part: from measurements, we estimate a_i and σ_i for relevant quantities.
 - Estimating p: we use known known models to translate these a_i and σ_i into the probability of the pipeline failure p.
 - Decision making: if $p \ge p_0$, the pipeline must be repaired.
- Fact: due to limited sampling, we only have a (confidence) interval $[\underline{p}, \overline{p}]$ of possible values of p.
- Regulations: repaired when $p \ge p_0$ is possible, i.e., when $\overline{p} \ge p_0$.
- Fact: pipeline repairs are extremely expensive.
- Conclusion: our estimates for p must be as accurate as possible.
- *Problem:* allocate given resources between different possible measurements so as to provide the most accurate estimation of the probability failure.
- How it is solved now: exhaustive search of all possible combinations of different measurements n_1, \ldots, n_k .
- Drawback: time consuming.

2. Statistical Approach to Pipeline Reliability Assessment: Motivations

- Quantities that describe the reliability of a pipeline x_1, \ldots, x_k :
 - the pipe's thickness,
 - parameters describing pipe deformation,
 - different degrees of corrosion, etc.
- Fact: the value of each x_i randomly varies from point to point.
- Why normal distributions:
 - the value of each x_i is caused by a large number of different independent factors:
 - to extend the pipeline's service, pipelines are designed in such a way that the effect of these major factors is minimized;
 - thus, the state of the pipe is affected by the large number of relatively small difficult-to-exclude processes;
 - due to the Central Limit Theorem, we have a normal distribution.
- Known: a normally distributed x_i is uniquely determined by its mean a_i and standard deviation σ_i .
- Fact: for different types of pipelines, there exist models f that estimate the probability of failure p:

$$p = f(a_1, \ldots, a_k, \sigma_1, \ldots, \sigma_k).$$

Introduction

Statistical Approach...

To Make a Meaningful.

Formulas for the...

Measurement Planning

First Result: Finding...

New Algorithm:...

Resulting Algorithm

Acknowledgments

Title Page

Page 3 of 10

Go Back

Full Screen

Close

3. To Make a Meaningful Decision About the Pipeline, We Must Also Know How Accurate Is the Reliability Estimate

- How estimates are done:
 - Measurements: for each x_i , we perform n_i measurements at different places along the pipeline;
 - Statistical analysis: based on the results $x_k^{(1)}, \ldots, x_k^{(n_k)}$ of these measurements, we compute:

$$\widetilde{a}_k = \frac{x_k^{(1)} + \dots + x_k^{(n_k)}}{n_k};$$

$$\widetilde{\sigma}_k = \sqrt{\frac{(x_k^{(1)} - \widetilde{a}_k)^2 + \ldots + (x_k^{(n_k)} - \widetilde{a}_k)^2}{n_k - 1}}.$$

- Estimating probability of failure:

$$\widetilde{p} = f(\widetilde{a}_1, \dots, \widetilde{a}_k, \widetilde{\sigma}_1, \dots, \widetilde{\sigma}_k).$$

- Problem: since $\widetilde{a}_i \approx a_i$ and $\widetilde{\sigma}_i \approx \sigma_i$, we have $\widetilde{p} \approx p$.
- Corollary: even when $\widetilde{p} < p_0$, it is possible that $p \ge p_0$.
- Resulting problem: to make a correct decision on the pipeline's state, we must have information about the estimation error $\Delta p \stackrel{\text{def}}{=} \widetilde{p} p$.

Introduction

Statistical Approach . . .

To Make a Meaningful.

Formulas for the . . .

Measurement Planning
First Result: Finding...

New Algorithm: . . .

ivew Algorithm....

Resulting Algorithm

Acknowledgments

Title Page

Go Back

Full Screen

Close

4. Formulas for the Accuracy of the Reliability Estimate

- Fact: estimation errors $\Delta a_i \stackrel{\text{def}}{=} \widetilde{a}_i a_i$ and $\Delta \sigma_i \stackrel{\text{def}}{=} \widetilde{\sigma}_i \sigma_i$ are small.
- Conclusion: we can safely ignore terms which are quadratic (and of higher order) in Δa_i and $\Delta \sigma_i$: $\Delta p = \sum_{i=1}^k \frac{\partial f}{\partial a_i} \cdot \Delta a_i + \sum_{i=1}^k \frac{\partial f}{\partial \sigma_i} \cdot \Delta \sigma_i$.
- Known:
 - for a reasonably large number of measurements, the estimation errors Δa_i and $\Delta \sigma_i$ are independent and (almost) normally distributed;
 - standard statistical estimates are un-biased so the mean values of the estimation errors is 0:
 - $-\ \sigma[\Delta a_i] = \frac{\sigma_i}{\sqrt{n_i}}; \ \sigma[\Delta \sigma_i] = \frac{\sigma_i}{\sqrt{2n_i}}.$
- Conclusion: Δp is a linear combination $\sum_{j=1}^{2k} \alpha_j \cdot \xi_j$ of independent normally distributed random variables with 0 means and known standard deviations $\sigma[\xi_j]$.
- Resulting formula: $\sigma^2 = \sum_{j=1}^{2k} \alpha_j^2 \cdot \sigma[\xi_j]^2$, i.e.:

$$\sigma^2 = \sum_{i=1}^k \left(\frac{\partial f}{\partial a_i}\right)^2 \cdot \frac{\sigma_i^2}{n_i} + \sum_{i=1}^k \left(\frac{\partial f}{\partial \sigma_i}\right)^2 \cdot \frac{\sigma_i^2}{2n_i}.$$

Introduction

Statistical Approach . . .

To Make a Meaningful . .

Formulas for the . . .

Measurement Planning

First Result: Finding ...

New Algorithm: ...

Resulting Algorithm

Acknowledgments

Title Page

Page 5 of 10

Go Back

Full Screen

Close

5. Measurement Planning

- *Idea*: once we performed a few measurements, and came up with the estimates \widetilde{a}_i , $\widetilde{\sigma}_i$, \widetilde{p} , and σ , then:
 - with probability 95%, we have $p < \widetilde{p} + 2\sigma$;
 - with probability 99.9\%, we have $p \leq \widetilde{p} + 3\sigma$;
 - in general, $p \leq \widetilde{p} + k_0 \sigma$ for an appropriate k_0 .
- Conclusion: $\sigma \leq \sigma_0 \stackrel{\text{def}}{=} \frac{p_0 \widetilde{p}}{k_0}$, or, equivalently, $\sigma^2 \leq \varepsilon_0 \stackrel{\text{def}}{=} \sigma_0^2$.
- We have shown: $\sigma^2 = \sum_{i=1}^k \left(\frac{\partial f}{\partial a_i}\right)^2 \cdot \frac{\sigma_i^2}{n_i} + \sum_{i=1}^k \left(\frac{\partial f}{\partial \sigma_i}\right)^2 \cdot \frac{\sigma_i^2}{2n_i}$.
- Constraint: $\sum_{i=1}^{k} \frac{b_i}{n_i} \le \varepsilon_0$, where $b_i \stackrel{\text{def}}{=} \left(\frac{\partial f}{\partial a_i}\right)^2 \cdot \sigma_i^2 + \left(\frac{\partial f}{\partial \sigma_i}\right)^2 \cdot \frac{\sigma_i^2}{2}$.
- Objective function: $\sum_{i=1}^{k} c_i \cdot n_i + c_0 \cdot \max_i n_i$, where:
 - $-c_i$ is the cost of *i*-th measurement, and
 - $-c_0$ is the cost of a single excavation.
- Resulting optimization problem: minimize $\sum_{i=1}^{k} c_i \cdot n_i + c_0 \cdot \max_i n_i$ under the constraint $\sum_{i=1}^{k} \frac{b_i}{n_i} \leq \varepsilon_0$.

Introduction

Statistical Approach . . .

To Make a Meaningful.

Formulas for the . . .

Measurement Planning

First Result: Finding . . .

New Algorithm: . . .

Resulting Algorithm

Acknowledgments

Title Page

Page 6 of 10

Go Back

Full Screen

Close

6. First Result: Finding the Exact Optimum is Computationally Intractable (NP-Hard)

- Reminder: minimize $\sum_{i=1}^k c_i \cdot n_i + c_0 \cdot \max_i n_i$ under the constraint $\sum_{i=1}^k \frac{b_i}{n_i} \leq \varepsilon_0$.
- First result: even a simplified version of this problem is NP-hard, when:
 - we fix n < n', and
 - for each i, we either perform n measurements, or n' measurements.
- *Proof:* by reduction to a known NP-hard subset sum problem:
 - given integers $s_1, \ldots, s_k > 0$ and an integer s > 0,
 - check whether it is possible to find a subset of this set of integers whose sum is equal to exactly s, i.e., whether $\exists y_i \in \{0,1\}$ for which $\sum s_i \cdot y_i = s$.
- Reduction: $y_i = 1$ if we choose n', and $y_i = 0$ if we choose n;
- $c_0 = 0$, $c_i \stackrel{\text{def}}{=} \frac{s_i}{n' n}$; $b_i \stackrel{\text{def}}{=} \frac{s_i \cdot n \cdot n'}{n' n}$, and $\varepsilon_0 \stackrel{\text{def}}{=} s_0 + \sum_{i=1}^k \frac{b_i}{n'}$
- Meaning of NP-hardness: we cannot find the optimal n_i faster than by time-consuming trying of all possible combinations of n_i .
- Uncertainty in the input makes faster algorithms possible:
 - in practice, the parameters b_i , c_i , and c_0 are only approximately known;
 - it is therefore reasonable, instead of looking for an optimal solution, to only look for an asymptotically optimal one.

Introduction

Statistical Approach . . .

To Make a Meaningful.

Formulas for the...

Measurement Planning

First Result: Finding . . .

New Algorithm: . . .

Resulting Algorithm

Acknowledgments

Title Page

Page 7 of 10

Go Back

Full Screen

Close

7. New Algorithm: Motivations

- Known:
 - discrete optimization problems are more difficult than
 - the continuous ones in which the values n_i can take arbitrary real values.
- Resulting approximate algorithm:
 - solve the corresponding continuous optimization problem;
 - round off n_i to the nearest integers.
- Accuracy:
 - rounding's absolute error is ≤ 0.5 , so
 - $\mbox{ relative error is} \leq \frac{0.5}{n_i} \sim \frac{1}{n_i}.$
- How to solve the continuous problem: for optimal n_i ,
 - adding small Δn_i for which $n'_i = n_i + \Delta n_i$ satisfy the constraints
 - should not decrease the value of the objective function.

8. Resulting Algorithm

- Sort i in the increasing order of b_i/c_i ; computation time $O(k \cdot \log(k))$.
- For every $t = 1, \ldots, k$, compute

$$Z_t \stackrel{\text{def}}{=} \sum_{j=1}^{t-1} \sqrt{b_j \cdot c_j} + \sqrt{\sum_{l=t}^k b_l} \cdot \sqrt{\sum_{l=t}^k c_l + c_0};$$

from Z_t to Z_{t+1} , each sum changes by only one term, so we only need a constant number of terms to find each of k values Z_t – to the total of O(k).

- Find t for which Z_t is the smallest; for this t, compute $\sqrt{\lambda} = Z_t/\varepsilon_0$.
- Compute $n_i = \sqrt{\lambda} \cdot \sqrt{\frac{b_i}{c_i}}$ for i < t and for $i \ge t$,

$$n_i = \sqrt{\lambda} \cdot \sqrt{\frac{\sum_{l=t}^k c_l}{\sum_{l=t}^k c_l + c_0}}.$$

This algorithm requires computation time

$$O(k \cdot \log(k)) + O(k) = O(k \cdot \log(k)).$$

Introduction

Statistical Approach . . .

To Make a Meaningful . .

Formulas for the . . .

Measurement Planning First Result: Finding...

New Algorithm: . . .

Resulting Algor<u>ithm</u>

Acknowledgments

Title Page

(4 **)**

•

Page 9 of 10

Go Back

Full Screen

Close

9. Acknowledgments

This work was supported in part:

- by NSF grant EAR-0225670,
- by NASA under cooperative agreement NCC5-209,
- by NIH grant 3T34GM008048-20S1,
- by Army Research Lab grant DATM-05-02-C-0046,
- by Star Award from the University of Texas System,
- and by Texas Department of Transportation grant No. 0-5453.



