Fitting a Normal Distribution to Interval and Fuzzy Data

Gang Xiang and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, USA
gxiang@utep.edu, vladik@utep.edu

Scott Ferson
Applied Biomathematics
100 North Country Road
Setauket, NY 11733, USA
email scott@ramas.com

Case of Interval . . . Case of Fuzzy Uncertainty From the . . . What Is Known Algorithm for . . . Quadratic-Time . . . Cubic-Time Algorithm . . Quadratic-Time . . . Main Idea of the Proofs Acknowledgments Page 1 of 12 Go Back Full Screen Close Quit

Formulation of the Problem

- Known empirical fact: in many real-life situations, the actual distribution is normal (Gaussian).
- Known mathematical fact: a normal distribution is uniquely determined by its mean a and its standard deviation σ : its cdf is $F(x) = \Phi\left(\frac{x-a}{\sigma}\right)$.
- How to find a and σ : main idea of method of moments is to equate moments of the distribution with sample moments.
- Resulting algorithm: compute

$$a = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i, \quad \sigma^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - a)^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2 - a^2,$$

and consider the normal distribution with these values a and σ as "fitted" to the data x_1, \ldots, x_n .

Case of Interval . . . Case of Fuzzy Uncertainty From the...

What Is Known

Algorithm for . . . Quadratic-Time...

Quadratic-Time . . .

Cubic-Time Algorithm . .

Main Idea of the Proofs

Acknowledgments Title Page

Full Screen

Close

Go Back

2. Case of Interval Uncertainty

- Traditional statistical approach: assumes that we have the exact values x_i forming the sample.
- In practice: we often only know the intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$ of possible values of x_i .
- Fact: different values of $x_i \in \mathbf{x}_i$ lead, in general, to different values of a and σ .
- Conclusion: for every x, different values of $x_i \in \mathbf{x}_i$ lead, in general, to different values of the cdf $F(x) = \Phi\left(\frac{x-a}{\sigma}\right)$.
- Objective: it is therefore desirable to find the interval $[\underline{F}(x), \overline{F}(x)]$ of possible values of the cdf.
- Objective reformulated: find a p-box that contains all possible cumulative distribution functions.

Case of Interval . . . Case of Fuzzy Uncertainty From the . . . What Is Known Algorithm for . . . Quadratic-Time . . . Cubic-Time Algorithm . . Quadratic-Time . . . Main Idea of the Proofs Acknowledgments Title Page Page 3 of 12 Go Back Full Screen Close Quit

3. Case of Fuzzy Uncertainty

- Expert estimates: often, knowledge comes in terms of uncertain expert estimates.
- Fuzzy techniques: to describe this uncertainty, for each value of estimation error Δx_i , we describe the degree $\mu_i(\Delta x_i)$ to which this value is possible.
- α -cuts general case: for each degree of certainty α , we can determine the set of values of Δx_i that are possible with at least this degree of certainty the α -cut $\{\Delta x_i \mid \mu_i(\Delta x_i) \geq \alpha\}$ of the original fuzzy set.
- α -cuts interval case: in most cases, this α -cut is an interval i.e., we have fuzzy numbers.
- Conclusion: fuzzy numbers $\mu_i(x)$ can be viewed as a family of nested intervals $\mathbf{x}_i(\alpha) \alpha$ -cuts of the given fuzzy sets.

I. From the Computational Viewpoint, Processing Fuzzy Uncertainty Reduces to Processing of Interval Uncertainty

- Reminder: a fuzzy number $\mu_i(x)$ can be viewed as a family of nested intervals $\mathbf{x}_i(\alpha)$ (its α -cuts).
- Our objective: to compute the fuzzy number corresponding to $y = f(x_1, \ldots, x_n)$.
- Fact: the α -cut of the desired fuzzy number is the range of f over the α -cuts $\mathbf{x}_i(\alpha)$ of the fuzzy sets $\mu_i(x)$.
- Typical situation: we want to describe 10 different levels of uncertainty.
- Solution: solve 10 interval computation problems.
- Conclusion: from the computational viewpoint, it is sufficient to produce an efficient algorithm for the interval case.

Case of Interval . . . Case of Fuzzy Uncertainty From the... What Is Known Algorithm for . . . Quadratic-Time... Cubic-Time Algorithm . . Quadratic-Time . . . Main Idea of the Proofs Acknowledgments Title Page Page 5 of 12 Go Back Full Screen Close

What Is Known

- Reminder: $F(x) = \Phi(r)$, where $r \stackrel{\text{def}}{=} \frac{x-a}{r}$.
- Reasonable idea: compute $[a, \overline{a}]$ and $[\sigma, \overline{\sigma}]$.
- Mean: $\underline{a} = \frac{1}{n} \cdot \sum_{i=1}^{n} \underline{x}_i, \ \overline{a} = \frac{1}{n} \cdot \sum_{i=1}^{n} \overline{x}_i.$
- Standard deviation: in general, NP-hard.
- Exponential time algorithm: try all 2^n combinations of $x_i = \overline{x}_i$ and $x_i = x_i$.
- No-nesting case: when $[\underline{x}_i, \overline{x}_i] \nsubseteq (\underline{x}_j, \overline{x}_j)$, there is an efficient algorithm.
- Problem: a and σ are dependent, so the resulting bound on $r = \frac{x-a}{\sigma}$ contains excess width.
- Our objective: find exact range for F(x).

Case of Interval . . .

Case of Fuzzy Uncertainty

From the...

What Is Known

Algorithm for . . .

Quadratic-Time . . .

Cubic-Time Algorithm . . Quadratic-Time . . .

Main Idea of the Proofs

Acknowledgments Title Page

Page 6 of 12

Go Back

Full Screen

Close

Algorithm for Computing the Exact Range

- Consider all 3^n partitions $\{1, \ldots, n\} = I^- \cup I^+ \cup I_0$.
- Set $x_i = x_i$ for $i \in I^-$, $x_i = \overline{x}_i$ for $i \in I^+$, and $x_i = a_0$ for $i \in I_0$, where a_0 is computed as follows:
- $\widetilde{a} \stackrel{\text{def}}{=} \sum_{i \in I^{-}} \underline{x}_{i} + \sum_{j \in I^{+}} \overline{x}_{j}, \ \widetilde{m} \stackrel{\text{def}}{=} \sum_{i \in I^{-}} (\underline{x}_{i})^{2} + \sum_{j \in I^{+}} (\overline{x}_{j})^{2}.$
- Find the value a from the quadratic equation

$$\widetilde{m} + \frac{1}{\#(I_0)} \cdot (n \cdot a - \widetilde{a})^2 = n \cdot \left(a - \frac{n \cdot a - \widetilde{a}}{\#(I_0)}\right) \cdot (x - a) + n \cdot a^2.$$

- Take $a_0 \stackrel{\text{def}}{=} \frac{n \cdot a \widetilde{a}}{N_-}$.
- Compute $\sigma = \sqrt{(a-a_0) \cdot (x-a)}$ and $r = \frac{x-a}{a}$.
- The smallest of these values r is returned as \underline{r} , and the largest is returned as \overline{r} ; then, $[F(x), \overline{F}(x) = [\Phi(r), \Phi(\overline{r})].$

Case of Interval . . .

Case of Fuzzy Uncertainty

From the . . .

What Is Known

Algorithm for . . .

Quadratic-Time . . . Cubic-Time Algorithm . .

Quadratic-Time . . .

Main Idea of the Proofs

Acknowledgments Title Page

Go Back

Full Screen

Close

Quadratic-Time Algorithm

- Applicable: to find \overline{r} for $x \geq a$ (and r for $x \leq \overline{a}$).
- First, we sort all 2n values \underline{x}_i and \overline{x}_i into a sequence

$$x_{(1)} \le x_{(2)} \le \ldots \le x_{(2n)}.$$

- Thus, we subdivide the real line into 2n+1 zones $[x_{(0)}, x_{(1)}], [x_{(1)}, x_{(2)}], \ldots, \text{ where } x_0 \stackrel{\text{def}}{=} -\infty \text{ and } x_{(2n+1)} \stackrel{\text{def}}{=}$ $+\infty$.
- For each zone $[x_{(k)}, x_{(k+1)}]$, we partition indices i into

$$I^{-} = \{i : x_{(k+1)} \le \underline{x}_i\}, \quad I^{+} = \{i \notin I^{-} : x_{(k)} \ge \overline{x}_i\},$$

$$I_0 = \{1, \dots, n\} - I^{-} - I^{+}.$$

- Based on this partition, we compute \widetilde{a} , \widetilde{m} , a, a_0 , and ras before.
- The largest of the resulting values r is the desired \bar{r} .

Case of Interval . . .

Case of Fuzzy Uncertainty

From the . . .

Algorithm for . . .

What Is Known

Quadratic-Time . . . Cubic-Time Algorithm . .

Quadratic-Time . . .

Main Idea of the Proofs

Acknowledgments Title Page

Page 8 of 12

Go Back

Full Screen

Close

8. Cubic-Time Algorithm for the No-Nesting Case

- No-nesting case (reminder): $[\underline{x}_i, \overline{x}_i] \not\subseteq (\underline{x}_j, \overline{x}_j)$.
- Result: we can compute \underline{r} for $x \geq \underline{a}$ (and \overline{r} for $x \leq \overline{a}$).
- Algorithm:
 - First, we sort all n intervals $[\underline{x}_i, \overline{x}_i]$ in the lexicographic order:

$$\underline{x}_1 \le \underline{x}_2 \le \ldots \le \underline{x}_n, \quad \overline{x}_1 \le \overline{x}_2 \le \ldots \le \overline{x}_n.$$

- For each $n^- < n^+ \le n$, partition indices into $I^- = \{1, \ldots, n^-\}$ and $I^+ = \{n^+, \ldots, n\}$.
- Based on this partition, we compute \tilde{a} , \tilde{m} , a, a_0 , and r as before.
- The smallest of the resulting values r is the desired r.
- Comment: we have n^2 cases of O(n) time algorithm.

Case of Interval . . . Case of Fuzzy Uncertainty From the... What Is Known Algorithm for . . . Quadratic-Time... Cubic-Time Algorithm . . Quadratic-Time . . . Main Idea of the Proofs Acknowledgments Title Page Page 9 of 12 Go Back Full Screen

Quit

Close

9. Quadratic-Time Algorithm for the No-Nesting Case

• Reminder: we need to compute the values

$$\widetilde{a} = \sum_{i=1}^{n^-} \underline{x}_i + \sum_{j=n^+}^n \overline{x}_j, \quad \widetilde{m} = \sum_{i=1}^{n^-} (\underline{x}_i)^2 + \sum_{j=n^+}^n (\overline{x}_j)^2.$$

- Main idea: compute the values $\sum_{i=1}^{n^-} \underline{x}_i$ and $\sum_{i=1}^{n^-} (\underline{x}_i)^2$ consequently:
 - we start with 0 and
 - we consequently add, correspondingly, \underline{x}_i or $(\underline{x}_i)^2$.
- Number of steps: constant for each new n^- .
- Similarly: to compute the n^+ -sum, we need a constant number of step for each n^+ .
- Result: $O(n^2)$ algorithm.

Case of Interval . . . Case of Fuzzy Uncertainty From the... What Is Known Algorithm for . . . Quadratic-Time... Cubic-Time Algorithm . . Quadratic-Time . . . Main Idea of the Proofs Acknowledgments Title Page Page 10 of 12 Go Back Full Screen

Close

Main Idea of the Proofs 10.

- Known fact from calculus: if a function f(x) attains its maximum on $[\underline{x}, \overline{x}]$ at x_0 , then:
 - if $x_0 \in (\underline{x}, \overline{x})$, then $\frac{\partial f}{\partial x} = 0$;
 - if $x_0 = \underline{x}$, then $\frac{\partial f}{\partial x_i} \leq 0$;
 - if $x_0 = \overline{x}$, then $\frac{\partial f}{\partial r} \ge 0$.
- Our case: the sign of $\frac{\partial r}{\partial r}$ is the same as the sign of $p_i \stackrel{\text{def}}{=} -(x_i - a) \cdot (x - a) - \sigma^2.$
- Conclusion: for all i for which $p_i = 0$, we have the same x_i .
- Related partition: I^- is when $x_i = \underline{x}_i$, I^+ is when $x_i =$ \overline{x}_i , all others have the same $x_i = a_0$.

Case of Fuzzy Uncertainty

From the . . .

Case of Interval . . .

What Is Known

Algorithm for . . .

Quadratic-Time . . . Cubic-Time Algorithm . .

Quadratic-Time . . .

Main Idea of the Proofs

Acknowledgments Title Page

Go Back

Full Screen

Close

11. Acknowledgments

This work was supported in part:

- \bullet by NSF grants EAR-0225670 and DMS-0532645 and
- by Texas Department of Transportation grant No. 0-5453.

