Detecting Duplicates in Geoinformatics: from Intervals and Fuzzy Numbers to General Multi-D Uncertainty

Scott A. Starks, Luc Longpré Roberto Araiza, Vladik Kreinovich University of Texas at El Paso El Paso, Texas 79968, USA sstarks@utep.edu, vladik@utep.edu

Hung T. Nguyen New Mexico State University Las Cruces, New Mexico 88003, USA

1. Outline

- ullet Fact: geospatial databases often contain duplicate records.
- it What are duplicates: two or more close records representing the same measurement result.
- *Problem:* how to detect and delete duplicates.
- Test case: measurements of anomalies in the Earth's gravity field that we have compiled.
- Previously analyzed case: closeness of two points (x_1, y_1) and (x_2, y_2) is described as closeness of both coordinates.
- What was known: $O(n \cdot \log(n))$ duplication deletion algorithm for this case.
- New result: we extend this algorithm to the case when closeness is described by an arbitrary metric.

2. Geospatial Databases: General Description

- Fact: researchers and practitioners have collected a large amount of geospatial data.
- Examples: at different geographical points (x, y), geophysicists measure values d of:
 - the gravity fields,
 - the magnetic fields,
 - elevation,
 - reflectivity of electromagnetic energy for a broad range of wavelengths (visible, infrared, and radar).
- How this data is stored: corresponding records (x_i, y_i, d_i) are stored in a large geospatial database.
- How this data is used: dased on these measurements, geophysicists generate maps and images and derive geophysical models that fit these measurements.

3. Gravity Measurements: Case Study

- Typical geophysical data (e.g., remote sending images):
 - mainly reflect the conditions of the Earth's *surface*;
 - cover a reasonably *local* area.
- Gravity measurements:
 - gravitation comes from the whole Earth, including deep zones;
 - gravity measurements cover *broad* areas.
- Conclusion: gravity measurements are one of the most important sources of information about subsurface structure and physical conditions.

4. Duplicates: Where They Come From

- Fact: the existing geospatial databases contain many duplicate points.
- Reason:
 - databases are rarely formed completely "from scratch";
 - they are usually are built by combining measurements from previous databases;
 - some measurements are represented in several of the combined databases.
- Conclusion: after combining databases, we get duplicate records.

5. Why duplicates Are a Problem

- Main reason: duplicate values can corrupt the results of statistical data processing and analysis.
- Example:
 - when we see several measurement results confirming each other,
 - we may get an erroneous impression that this measurement result is more reliable than it actually is.
- Conclusion: detecting and eliminating duplicates is an important part of assuring and improving the quality of geospatial data.

6. Duplicates and Related Uncertainty

- *Ideal case:* measurement results are simply stored in their original form.
- In this case: duplicates are identical records, easy to detect and to delete.
- In reality: databases use different formats and units.
- Example: the latitude can be stored in degrees (as 32.1345) or in degrees, minutes, and seconds.
- As a result: when a record (x_i, y_i, d_i) is placed in a database, it is transformed into this database's format.
- Fact: transformations are approximate.
- Result: records representing the same measurement in different formats get transformed into values which correspond to close but not identical points"

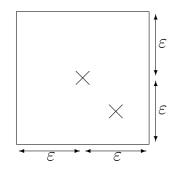
$$(x_i,y_i)\neq (x_j,y_j).$$

Gravity . . . Duplicates: Where . . . Why duplicates Are a ... Duplicates and . . . Duplicates . . . Duplicates Are Not . . . From Interval to Fuzzy... What We Did in Our . . . Formalization of the . . . New Algorithm: . . . Possibility of . . . Acknowledgments Title Page **>>** Page 7 of 15 Go Back Full Screen Close

7. Duplicates Corresponding to Interval Uncertainty

Geophysicists produce a threshold $\varepsilon > 0$ such that ε -closed points (x_i, y_i) and (x_j, y_j) are duplicates.

In other words, if a new point (x_j, y_j) is within a 2D *interval* $[x_i - \varepsilon, x_i + \varepsilon] \times [y_i - \varepsilon, y_i + \varepsilon]$ centered at one of the existing points (x_i, y_i) , then this new point is a duplicate:



8. Duplicates Are Not Easy to Detect and Delete

- Problem: detect and delete duplicates.
- How this is done now: "by hand", by a professional geophysicist looking at the raw measurement results (and at the preliminary results of processing these raw data).
- Limitations: time-consuming.
- Natural idea: use a computer to compare every record with every other record.
- Analysis: this idea requires $\frac{n(n-1)}{2} \sim \frac{n^2}{2}$ comparisons.
- Limitation: this is impossible for large databases, with $n \approx 10^6$ records.
- Conclusion: faster algorithms are needed.

Gravity . . . Duplicates: Where . . . Why duplicates Are a ... Duplicates and . . . Duplicates . . . Duplicates Are Not . . . From Interval to Fuzzy . . What We Did in Our . . . Formalization of the . . . New Algorithm: . . . Possibility of . . . Acknowledgments Title Page Page 9 of 15 Go Back Full Screen Close

9. From Interval to Fuzzy Uncertainty

- Typical situation: geophysicists provide several possible threshold values $\varepsilon_1 < \varepsilon_2 < \ldots < \varepsilon_m$ that correspond to decreasing levels of their certainty:
 - if two measurements are ε_1 -close, we are 100% certain that they are duplicates;
 - if two measurements are ε_2 -close, then with some degree of certainty, we can claim them to be duplicates, etc.

• Objectives:

- eliminate *certain* duplicates, and
- mark *possible* duplicates (about which we are not 100% certain) with the corresponding degree of certainty.
- Reduction to interval case: we need to solve the interval problem for several different values of ε_i .

Duplicates: Where . . . Why duplicates Are a ... Duplicates and . . . Duplicates . . . Duplicates Are Not . . . From Interval to Fuzzy . . . What We Did in Our . . . Formalization of the . . . New Algorithm: . . . Possibility of . . . Acknowledgments Title Page **>>** Page 10 of 15 Go Back Full Screen Close

Gravity . . .

10. What We Did in Our Previous Work

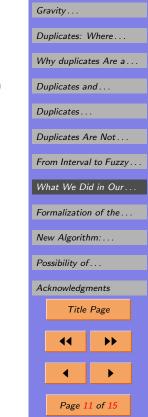
- Previously analyzed case: ε -closeness of two points (x_i, y_i) and (x_j, y_j) is described as ε -closeness of both coordinates.
- Geometric reformulation: the set of all points which are ε -close to a given point is a box.
- Result of the analysis: there exists efficient $O(n \cdot \log(n))$ algorithms for detecting and deleting outliers.
- More general situation: when ε -closeness is described by an arbitrary metric: e.g., Euclidean metric

$$d((x_i, y_i), (x_j, y_j)) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

or l^p -metric

$$d((x_i, y_i), (x_j, y_j)) = \sqrt[p]{|x_i - x_j|^p + |y_i - y_j|^p}.$$

• What we do now: extend the existing algorithms to this more general metric situation.



Go Back

Full Screen

Close

11. Formalization of the Problem

- By a *metric*, we mean a triple (S, c, C), where
 - $S \subseteq \mathbb{R}^m$ is a convex set that contains 0, and
 - c > 0 and C > 0 are numbers

such that:

- S is symmetric (i.e., for every point r, we have $r \in S$ if and only if $-r \in S$) and
- $[-c, c] \times \ldots \times [-c, c] \subseteq S \subseteq [-C, C] \times \ldots \times [-C, C]$.
- We say that points r and r' are ε -close if $\frac{r-r'}{\varepsilon} \in S$.
- Comment: the property of c means that S contains all points close to 0.
- Example of interval uncertainty: S is a cube:

$$S = [-1, 1] \times \ldots \times [-1, 1].$$

Duplicates: Where...

Gravity . . .

Why duplicates Are a...

Duplicates and . . .

Duplicates . . .

Duplicates Are Not...
From Interval to Fuzzy...

What We Did in Our...

Formalization of the...

New Algorithm: . . .
Possibility of . . .

Acknowledgments

Title Page

Page 12 of 15

Go Back

Full Screen

Close

New Algorithm: General Description

• Stage 1: for each record, compute the indices

$$p_i = \lfloor x_i/(C \cdot \varepsilon) \rfloor, \ldots, q_i = \lfloor y_i/(C \cdot \varepsilon) \rfloor.$$

- *Stage 2:*
 - Sort the records in lexicographic order \leq by their index vector $\vec{p_i} = (p_i, \dots, q_i)$.
 - If several records have the same index vector, check whether some are duplicates of one another, and delete the duplicates.
 - As a result, we get an index-lexicographically ordered list of records: $r_{(1)} \leq \ldots \leq r_{(n_0)} \ (n_0 \leq n)$.
- Stage 3: For i from 1 to n_0 , we compare the record $r_{(i)}$ with all its \leq -following "immediate neighbors" $r_{(i)}$:

$$|p_{(i)} - p_{(j)}| \le 1, \dots, |q_{(i)} - q_{(j)}| \le 1.$$

If $r_{(i)}$ is a duplicate to $r_{(i)}$, we delete $r_{(i)}$.

Gravity . . . Duplicates: Where . . . Why duplicates Are a . . . Duplicates and . . . Duplicates . . . Duplicates Are Not . . . From Interval to Fuzzy... What We Did in Our . . . Formalization of the . . . New Algorithm: . . . Possibility of . . . Acknowledgments Title Page Page 13 of 15 Go Back Full Screen Close

>>

13. Possibility of Parallelization

- Problem: for large n, an $O(n \cdot \log(n))$ algorithm still requires too much time.
- Possible solution: if we have several processors that can work in parallel, we can speed up computations.
- Example: we have $n^2/2$ processors.
- Simple result: by assigning each pair (r_i, r_j) to a different processor, we can detect and delete all duplicates in one step.
- Other parallelization results:
 - If we have at least n processors, then we can delete duplicates in time $O(\log(n))$.
 - If we have p < n processors, then we can delete duplicates in time $O\left(\left(\frac{n}{p}+1\right) \cdot \log(n)\right)$.

14. Acknowledgments

This work was supported in part:

- by NSF grant EAR-0225670,
- by Texas Department of Transportation grant No. 0-5453, and
- by the Japan Advanced Institute of Science and Technology (JAIST) International Joint Research Grant 2006-08.

We are very thankful to the anonymous referees for the useful comments.

