What is the Best Way to Distribute Efforts Among Students: Towards Quantitative Approach to Human Cognition

Olga Kosheleva¹ and Vladik Kreinovich²

¹Department of Mathematics Education

²Department of Computer Science

University of Texas at El Paso

500 W. University

El Paso, TX 79968, USA

Emails: {olgak,vladik}@utep.edu

1. Deciding Which Teaching Method Is Better: Formulation of the Problem

- Pedagogy is a fast developing field.
- New methods, new ideas and constantly being developed and tested.
- New methods and new idea may be different in many things:
 - they may differ in the way material is presented,
 - they may also differ in the way the teacher's effort is distributed among individual students.
- To perform a meaningful testing, we need to agree on the criterion.
- Once we have selected a criterion, a natural question is: what is the optimal way to teaching the students.

2. How Techniques Are Compared Now: A Brief Description

- The success of each individual student i can be naturally gauged by this student's grade x_i .
- So, for two different techniques T and T', we know the corresponding grades x_1, \ldots, x_n and $x'_1, \ldots, x'_{n'}$.
- In pedagogical experiments, the decision is usually made based on the comparison of the average grades

$$E \stackrel{\text{def}}{=} \frac{x_1 + \ldots + x_n}{n}$$
 and $E' \stackrel{\text{def}}{=} \frac{x_1' + \ldots + x_{n'}'}{n'}$.

- Example: we had $x_1 = 60$, $x_2 = 90$, hence E = 75. Now, we have $x'_1 = x'_2 = 70$, and E' = 70. In T':
 - the average grade is worse, but
 - in contrast to T, no one failed.

Deciding Which . . . How Techniques Are . . . Towards Selecting the . . . Towards Selecting the . . . Explicit Solution: . . . Need to Take . . . Case of Interval . . . Case of Fuzzy Uncertainty Title Page **>>** 44 Page 3 of 13 Go Back Full Screen

Close

Quit

3. Towards Selecting the Optimal Teaching Strategy: Possible Objective Functions

- Fact: the traditional approach of using the average grade as a criterion is not always adequate.
- Conclusion: other criteria $f(x_1, \ldots, x_n)$ are needed.
- Maximizing passing rate: $f = \#\{i : x_i \ge x_0\}.$
- No child left behind: $f(x_1, \ldots, x_n) = \min(x_1, \ldots, x_n)$.
- Best school to get in: $f(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n)$.
- Case of independence: decision theory leads to $f = f_1(x_1) + \ldots + f_n(x_n)$ for some functions $f_i(x_i)$.
- Criteria combining mean E and variance V to take into account that a larger mean is not always better:

$$f(x_1,\ldots,x_n)=f(E,V).$$

• Comment: it is reasonable to require that f(E, V) is increasing in E and decreasing in V.

4. Towards Selecting the Optimal Teaching Strategy: Formulation of the Problem

- Let $e_i(x_i)$ denote the amount of effort (time, etc.) that is need for *i*-th student to achieve the grade x_i .
- Clearly, the better grade we want to achieve, the more effort we need.
- So, each function $e_i(x_i)$ is strictly increasing.
- Let e denote the available amount of effort.
- In these terms, the problem of selecting the optimal teaching strategy takes the following form:

Maximize
$$f(x_1, \ldots, x_n)$$

under the constraint

$$e_1(x_1) + \ldots + e_n(x_n) \le e.$$

5. Explicit Solution: Case of Independent Students

• Maximize: $f_1(x_1) + \ldots + f_n(x_n)$ under the constraint

$$e_1(x_1) + \ldots + e_n(x_n) \le e.$$

- Observation: the more efforts, the better results, so we can assume $e_1(x_1) + \ldots + e_n(x_n) = e$.
- Lagrange multiplier: maximize

$$J = \sum_{i=1}^{n} f_i(x_i) + \lambda \cdot \sum_{i=1}^{n} e_i(x_i).$$

- Equation $\frac{\partial J}{\partial x_i} = 0$ leads to $f'_i(x_i) + \lambda \cdot e'_i(x_i) = 0$.
- Thus, once we know λ , we can find all x_i .
- λ can be found from the condition $\sum_{i=1}^{n} e_i(x_i(\lambda)) = e$.

Deciding Which...

How Techniques Are...

Towards Selecting the...

Towards Selecting the...

Explicit Solution:...

Need to Take...

Case of Interval...

Case of Fuzzy Uncertainty

Title Page

44 >>

·

Page 6 of 13

Go Back

Full Screen

Close

Quit

6. Explicit Solution: "No Child Left Behind" Case

- In the No Child Left Behind case, we maximize the lowest grade.
- There is no sense to use the effort to get one of the student grades better than the lowest grade.
- It is more beneficial to use the same efforts to increase the grades of all the students at the same time.
- In this case, the common grade x_c that we can achieve can be determined from the equation

$$e_1(x_c) + \ldots + e_n(x_c) = e.$$

- \bullet Students may already have knowledge $x^{(1)} \leq x^{(2)} \leq \dots$
- In this case, we find the largest k for which $e_1(x_k^{(0)}) + \ldots + e_k(x_k^{(0)}) \le e$ and then $x \in [x_k^{(0)}, x_{k+1}^{(0)})$ s.t.

$$e_1(x) + \ldots + e_{k-1}(x) + e_k(x) = e.$$

Deciding Which . . . How Techniques Are . . . Towards Selecting the . . . Towards Selecting the . . . Explicit Solution: . . . Need to Take . . . Case of Interval . . . Case of Fuzzy Uncertainty Title Page **>>** 44 Page 7 of 13 Go Back Full Screen Close Quit

7. Explicit Solution: "Best School to Get In" Case

- Best School to Get In means maximizing the largest possible grade x_i .
- The optimal use of effort is, of course, to concentrate on a single individual and ignore the rest.
- Which individual to target depends on how much gain we will get:
 - first, for each i, we find x_i for which $e_i(x_i) = e$, and then
 - we choose the student with the largest value of x_i as a recipient of all the efforts.

8. Need to Take Uncertainty Into Account

- We assumed that:
 - we know exactly the benefits $f(x_1, ..., x_n)$ of achieving knowledge levels x_i ;
 - we know exactly how much effort $e_i(x_i)$ is needed for each level x_i , and
 - we know exactly the level of knowledge x_i of each student.
- In practice, we have *uncertainty*:
 - we only know the average benefit u(x) of grade x to a student;
 - we only know the average effort e(x) needed to bring a student to the level x; and
 - the grade \tilde{x}_i is only an approximate indication of the student's level of knowledge.

9. Average Benefit Function

- Objective function: $f(x_1, ..., x_n) = u(x_1) + ... + u(x_n)$.
- Usually, the benefit function is reasonably smooth.
- In this case, if (hopefully) all grades are close, we can keep only quadratic terms in the Taylor expansion:

$$u(x) = u_0 + u_1 \cdot x + u_2 \cdot x^2.$$

• So, the objective function takes the form

$$f(x_1, \dots, x_n) = n \cdot u_0 + u_1 \cdot \sum_{i=1}^n x_i + u_2 \cdot \sum_{i=1}^n x_i^2.$$

- Fact: $E = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ and $M = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2 = V + E^2$.
- Conclusion: f depends only on the mean E and on the variance V.

Deciding Which . . .

How Techniques Are...

Towards Selecting the . . .

Towards Selecting the . . .

Explicit Solution: . . .

Need to Take...

Case of Interval . . .

Case of Fuzzy Uncertainty

Title Page

Page 10 of 13

Go Back

Full Screen

Close

Quit

10. Case of Interval Uncertainty

- Situation: we only know intervals $[\underline{x}_i, \overline{x}_i]$ of possible values of x_i .
- Fact: the benefit function u(x) is increasing (the more knowledge the better).
- Conclusion:
 - the benefit is the largest when $x_i = \overline{x}_i$, and
 - the benefit is the smallest when $x_i = \underline{x}_i$.
- Resulting formula: $[\underline{f}, \overline{f}] = \left[\sum_{i=1}^{n} u(\underline{x}_i), \sum_{i=1}^{n} u(\overline{x}_i)\right].$
- Reminder: for quadratic u(x) and exactly known x_i , we only need to know E and M.
- New result: under interval uncertainty, we need all n intervals.

11. Case of Fuzzy Uncertainty

- In many practical situations, the estimates \tilde{x}_i come from experts.
- Experts often describe the inaccuracy of their estimates in terms of imprecise words from natural language.
- A natural way to formalize such words is to use fuzzy logic:
 - for each possible value of $x_i \in [\underline{x}_i, \overline{x}_i]$,
 - we describe the degree $\mu_i(x_i)$ to which x_i is possible.
- Alternatively, we can consider α -cuts $\{x : \mu_i(x_i) \geq \alpha\}$.
- For each α , the fuzzy set $y = f(x_1, \dots, x_n)$ has α -cuts

$$\mathbf{y}(\alpha) = f(\mathbf{x}_1(\alpha), \dots, \mathbf{x}_1(\alpha)).$$

• So, the problem of propagating fuzzy uncertainty can be reduced to several interval propagation problems.

12. Acknowledgments

This work was supported in part:

- by NSF grant HRD-0734825, and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

Deciding Which...

How Techniques Are...

Towards Selecting the...

Towards Selecting the...

Explicit Solution:...

Need to Take...

Case of Interval...

Case of Fuzzy Uncertainty

