Extending Maximum Entropy Techniques to Entropy Constraints

Gang Xiang¹ and Vladik Kreinovich²

¹Philips Healthcare El Paso, Texas 79902, USA gxiang@sigmaxi.net

²Department of Computer Science University of Texas at El Paso 500 W. University El Paso, TX 79968, USA contact email vladik@utep.edu

1. Probabilities are Usually Imprecise: A Reminder

- Often, we have only *partial* (imprecise) information about the probabilities:
 - Sometimes, we have *crisp* (interval) bounds on probabilities (and/or other statistical characteristics).
 - Sometimes, we have *fuzzy* bounds, i.e., different interval bounds with different degrees of certainty.
- In this case, for each statistical characteristic, it is desirable to find:
 - the worst possible value of this characteristic,
 - the best possible value of this characteristic, and
 - the "typical" ("most probable") value of this characteristic.

2. Maximum Entropy (MaxEnt) Approach

- By the "typical" value of a characteristic, we mean its value for a "typical" distribution.
- ullet Usually, as such a "typical" distribution, we select the one with the largest value of the entropy S.
- Meaning: S = average # of "yes"-"no" questions (bits) that we need to ask to determine the exact value x_i .
- When we have n different values x_1, \ldots, x_n with probabilities p_1, \ldots, p_n , the entropy S(p) is defined as

$$S \stackrel{\text{def}}{=} -\sum_{i=1}^{n} p_i \cdot \log_2(p_i).$$

- For pdf $\rho(x)$, $S \stackrel{\text{def}}{=} \int \rho(x) \cdot \log_2(\rho(x)) dx$.
- S is related to the average number of questions needed to determine x with a given accuracy $\varepsilon > 0$.

3. MaxEnt Approach: Successes and Limitations

- Successes: when we know values of ranges and moments.
- Example 1: if we only know that $x \in [\underline{x}, \overline{x}]$, we get a uniform distribution on this interval.
- Example 2: if we only know the first 2 moments, we get a Gaussian distribution.
- Problem: sometimes, we also know the value S_0 of the entropy itself.
- Why this is a problem:
 - all distributions satisfying this constraint $S = S_0$ have the same entropy;
 - hence the MaxEnt approach cannot select a one.
- What we do: we show how to handle this constraint.

4. Main Idea and Its Consequences

- Fact: the actual probabilities p_1, \ldots, p_n are only approximately equal to frequencies: $p_i \approx f_i$.
- *Idea:* instead of selecting "typical" probabilities, let us select "typical" frequencies.
- Hence: since $p_i \approx f_i$, we have $S(p_i) \approx S(f_i) = S_0$.
- Idea: select f_i and consistent p_i for which the entropy S(p) is the largest possible.
- Asymptotically: each $\delta_i \stackrel{\text{def}}{=} p_i f_i$ is normal, with mean 0 and $\sigma_i^2 = \frac{f_i \cdot (1 f_i)}{N}$, where N denotes sample size.
- Thus: by χ^2 , $\sum_{i=1}^n \frac{\delta_i^2}{\sigma_i^2} = \sum_{i=1}^n \frac{\delta_i^2}{f_i \cdot (1-f_i)/N} \approx n$.
- Resulting problem: find f_i and p_i that maximize S(p) under the above condition.

5. Analysis of the Problem

• Problem: under
$$\sum_{i=1}^{n} \frac{\delta_i^2}{f_i \cdot (1 - f_i)/N} = \frac{n}{N}$$
, maximize $S(p) = S(f_1 + \delta_1, \dots, f_n + \delta_n) = -\sum_{i=1}^{n} (f_i + \delta_i) \cdot \log_2(f_i + \delta_i)$.

• For large $N: \delta_i$ are small, so

$$S(f_1 + \delta_1, \dots, f_n + \delta_n) = S(f_1, \dots, f_n) + \sum_{i=1}^n \frac{\partial S}{\partial f_i} \cdot \delta_i.$$

• Here, $\frac{\partial S}{\partial f_i} = -\log_2(f_i) - \log_2(e)$, so Lagrange multiplier method leads to maximizing

$$S_0 - \sum_{i=1}^n (\log_2(f_i) + \log_2(e)) \cdot \delta_i + \lambda \cdot \sum_{i=1}^n \frac{\delta_i^2}{f_i \cdot (1 - f_i)}.$$

Probabilities are...

Maximum Entropy...

MaxEnt Approach:...

Main Idea and Its...

Analysis of the Problem

nalysis of the Problem

Continuous Case: . . .

How We Go From...

Continuous Analog of S_2

Meaning of Entropy S:..Conclusions and ...

Title Page

Page 6 of 14

Go Back

Full Screen

Close

Quit

6. Analysis of the Problem (cont-d)

• Reminder: we maximize

$$S_0 - \sum_{i=1}^n (\log_2(f_i) + \log_2(e)) \cdot \delta_i + \lambda \cdot \sum_{i=1}^n \frac{\delta_i^2}{f_i \cdot (1 - f_i)}.$$

• Analysis: equating derivatives to 0, we get δ_i in terms of λ , then λ in terms of f_i , so the maximum is

$$S_2 \stackrel{\text{def}}{=} \sum_{i=1}^n (\log_2(f_i) + \log_2(e))^2 \cdot f_i \cdot (1 - f_i).$$

- Result:
 - if we have several distributions with the same values of the entropy S,
 - we should select the one with the largest value of the new characteristic S_2 .

Probabilities are . . . Maximum Entropy . . . MaxEnt Approach: . . . Main Idea and Its... Analysis of the Problem Continuous Case: . . . How We Go From . . . Continuous Analog of S2 Meaning of Entropy S:...Conclusions and . . . Title Page Page 7 of 14 Go Back Full Screen Close Quit

7. Continuous Case: Main Idea

• Situation: we have a continuous distribution, with pdf

$$\rho(x) \stackrel{\text{def}}{=} \lim_{\Delta x \to 0} \frac{p([x, x + \Delta x])}{\Delta x}.$$

- *Idea*:
 - we divide the interval of possible values of x into intervals $[x_i, x_i + \Delta x]$ of small width Δx ;
 - we consider the discrete distribution with these intervals as possible values.
- Fact: when Δx is small, by the definition of the pdf, we have $p_i \approx \rho(x_i) \cdot \Delta x$.
- Limit: then, we take the limit $\Delta x \to 0$.
- Example: this is how we go from the discrete entropy $S(p_1, \ldots, p_n)$ to the entropy $S(\rho)$ of the continuous one.

B. How We Go From $S(p_1, \ldots, p_n)$ to $S(\rho)$: Reminder

- Reminder: $S \stackrel{\text{def}}{=} -\sum_{i=1}^{n} p_i \cdot \log_2(p_i)$.
- *Idea*: take $p_i = \rho(x_i) \cdot \Delta x$ and take a limit $\Delta x \to 0$:

$$S = -\sum_{i=1}^{n} \rho(x_i) \cdot \Delta x \cdot \log_2(\rho(x_i) \cdot \Delta x) =$$

$$-\sum_{i=1}^{n} \rho(x_i) \cdot \Delta x \cdot \log_2(\rho(x_i)) - \sum_{i=1}^{n} \rho(x_i) \cdot \Delta x \cdot \log_2(\Delta x).$$

- So, $S \sim -\int \rho(x) \cdot \log_2(\rho(x)) dx \log_2(\Delta x)$.
- Fact: the second term in this sum does not depend on the probability distribution at all.
- Corollary: maximizing the entropy S is equivalent to maximizing the integral in the above expression.
- Observation: the integral $-\int \rho(x) \cdot \log_2(\rho(x)) dx$ is exactly the entropy of the continuous distribution.

Maximum Entropy . . . MaxEnt Approach: . . . Main Idea and Its... Analysis of the Problem Continuous Case: . . . How We Go From . . . Continuous Analog of S_2 Meaning of Entropy S:...Conclusions and . . . Title Page Page 9 of 14 Go Back Full Screen Close Quit

Probabilities are . . .

9. Continuous Analog of S_2

- Reminder: $S_2 \stackrel{\text{def}}{=} \sum_{i=1}^n (\log_2(f_i) + \log_2(e))^2 \cdot f_i \cdot (1 f_i).$
- Idea: take $f_i = \rho(x_i) \cdot \Delta x$ and take a limit $\Delta x \to 0$.
- Asymptotically: $S_2 = \int (\log_2(\rho(x)))^2 \cdot \rho(x) dx 2 \cdot (\log_2(\Delta x) + \log_2(e)) \cdot S + (\log_2(\Delta x) + \log_2(e))^2$.
- The 2nd and 3rd terms depend only on the step size Δx and on the entropy S but not explicitly on $\rho(x)$.
- \bullet Reminder: we assume that S is known.
- Corollary: maximizing the value S_2 is equivalent to maximizing the integral in the above expression.
- Conclusion: select the distribution with the largest

$$S_2(\rho) \stackrel{\text{def}}{=} \int (\log_2(\rho(x)))^2 \cdot \rho(x) \, dx.$$

10. Meaning of Entropy *S*: Reminder

- *Idea*: the average number E[q] of "yes"-"no" questions needed to locate x with a given accuracy $\varepsilon > 0$.
- \bullet Simple case: k alternatives, probabilities unknown.
- Fact: after q yes-no questions, we have 2^q combinations of answers (a_1, \ldots, a_n) , so $2^q \ge k$ and $q \ge \log_2(k)$.
- We can ask the questions about all b binary digits of x = 1, ..., k, so we need $q \le b \approx \log_2(k)$ questions.
- For each interval of width ε , we have $p \approx \rho(x) \cdot \varepsilon$ hence $N \cdot p$ elements.
- To locate x, we locate a group of $N \cdot p$ elements out of N; there are k = 1/p such groups.
- We need $q = \log_2(k) = -\log_2(p) = -\log(\rho(x) \cdot \varepsilon)$ questions.
- Thus, $E[q] = -\int \log(\rho(x) \cdot \varepsilon) \cdot \rho(x) dx = S \log_2(\varepsilon)$.

11. Meaning of S_2

- S relates to the average number E[q] of "yes"-"no" questions needed to locate x with accuracy $\varepsilon > 0$.
- Our case: all distribution have the same entropy.
- Corollary: they have the same mean E[q].
- Difference: they may have different st. dev. $\sigma[q]$.
- General idea: possible values of q are in the interval $[E[q] k_0 \cdot \sigma[q], E[q] k_0 \cdot \sigma[q]]$, with $k_0 = 2, 3, 6$.
- Corollary: for fixed E[q], the largest q is possible when $\sigma[q]$ is the largest.
- Observation: S_2 is indeed related to the st. dev. $\sigma[q]$ of the number q of "yes"-"no" questions:

 $S_2 \to \max \Leftrightarrow \sigma[q] \to \max$.

12. Conclusions and Future Work

- In many practical situations, we have incomplete information about the probabilities.
- In this case, among all possible probability distributions, it is desirable to select the most "typical" one.
- \bullet Traditionally, we select the distribution which has the largest possible value of the entropy S.
- This approach has many successful applications, but it does not work when we know the entropy S_0 .
- We show that in such situations, we should maximize a special characteristic $S_2 = \int (\log_2(\rho(x)))^2 \cdot \rho(x) dx$.
- Remaining open questions:
 - what if we know the values of S_2 as well?
 - how to extend S_2 to the cases of interval and fuzzy uncertainty?

13. Acknowledgment

- This work was also supported in part
 - by the National Science Foundation grants HRD-0734825 and DUE-0926721,
 - by Grant 1 T36 GM078000-01 from the National Institutes of Health, and
 - by the Science and Technology Centre in Ukraine (STCU) Grant 5015, funded by European Union.
- The authors are thankful to Ron Yager for valuable discussions.

