From Single to Double Use Expressions, with Applications to Parametric Interval Linear Systems: On Computational Complexity of Fuzzy and Interval Computations

Joe Lorkowski
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, Texas 79968, USA
Email: lorkowski@ieee.org
or: lorkowski@computer.org

Introduction

Interval Data Processing

- ▶ Every day, we use estimated values $\widetilde{x}_1, \ldots, \widetilde{x}_n$ to get an estimated value $\widetilde{y} = f(\widetilde{x}_1, \ldots, \widetilde{x}_n)$.
- ▶ Even if an algorithm f is exact, because of uncertainty $\widetilde{x}_i \neq x_i$ produces $\widetilde{y} \neq y$.
- ▶ Often, the only knowledge of the measurement error Δx_i is the upper bound Δ_i such that $|\Delta x_i| \leq \Delta_i$
- ▶ Then, the only knowledge we have about x_i is that x_i belongs to the interval $\mathbf{x}_i = [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i]$.

The main problem of Interval Computation

- ▶ Different values x_i from intervals \mathbf{x}_i lead, in general, to different values $y = f(x_1, \dots, x_n)$.
- ➤ To gauge the uncertainty in *y*, it is necessary to find the range of all possible values of *y*:

$$\mathbf{y} = [\underline{y}, \overline{y}] = f(\mathbf{x}_1, \dots, \mathbf{x}_n) = \{f(x_1, \dots, x_n) : x_i \in \mathbf{x}_1, \dots, \mathbf{x}_n\}.$$

► The problem of estimating the range based on given intervals **x**_i constitutes the main problem of *interval* computations

Interval Computations

- ▶ For arithmetic operations $f(x_1, x_2)$, $x_1 \in \mathbf{X}_1$, $x_2 \in \mathbf{X}_2$ there are explicit formulas called *interval arithmetic*.
- \blacktriangleright $f(x_1, x_2)$ for add, sub, mult, & div are described by:

$$\begin{aligned} & [\underline{x}_1, \overline{x}_1] + [\underline{x}_2, \overline{x}_2] = [\underline{x}_1 + \underline{x}_2, \overline{x}_1 + \overline{x}_2]; \\ & [\underline{x}_1, \overline{x}_1] - [\underline{x}_2, \overline{x}_2] = [\underline{x}_1 - \overline{x}_2, \overline{x}_1 - \underline{x}_2]; \end{aligned}$$

$$\begin{split} [\underline{x}_1,\overline{x}_1]\cdot[\underline{x}_2,\overline{x}_2] &= [\text{min}(\underline{x}_1\cdot\underline{x}_2,\underline{x}_1\cdot\overline{x}_2,\overline{x}_1\cdot\underline{x}_2,\overline{x}_1\cdot\overline{x}_2),\\ &\quad \text{max}(\underline{x}_1\cdot\underline{x}_2,\underline{x}_1\cdot\overline{x}_2,\overline{x}_1\cdot\underline{x}_2,\overline{x}_1\cdot\overline{x}_2)]; \end{split}$$

$$\begin{split} &\frac{[\underline{X}_1,\overline{X}_1]}{[\underline{X}_2,\overline{X}_2]} = [\underline{X}_1,\overline{X}_1] \cdot \frac{1}{[\underline{X}_2,\overline{X}_2]} \text{ if } 0 \not\in [\underline{X}_2,\overline{X}_2]; \\ &\frac{1}{[\underline{X}_2,\overline{X}_2]} = \left[\frac{1}{\overline{X}_2},\frac{1}{\underline{X}_2}\right] \text{ if } 0 \not\in [\underline{X}_2,\overline{X}_2] \end{split}$$

Fuzzy Data Processing

- ▶ When estimates \widetilde{x}_i come from experts in the form "approximately 0.1" there are no guaranteed upper bounds on the estimation error $\Delta x_i = \widetilde{x}_i x_i$.
- Fuzzy Logic is a formalization of natural language specifically designed to deal with expert estimates.
- ▶ To describe a fuzzy property P(U), assign to every object $x_i \in U$, the degree $\mu_P(x_i) \in [0, 1]$ which, according to an expert, x_i satisfies the property
 - if the expert is absolutely sure it does, the degree is 1
 - if the expert is absolutely sure it does not, the degree is 0
 - else, the degree is between 0 and 1
- $\mu_P(x_i)$ can be a table lookup or a calculated value using a predefined function based on the experts' estimates.

Fuzzy Data Processing

▶ A real number $y = f(x_1, ..., x_n)$ is possible \Leftrightarrow

$$\exists x_1 \dots \exists x_n ((x_1 \text{ is possible}) \& \dots \& (x_n \text{ is possible}) \&$$

 $y = f(x_1, \dots, x_n).$

▶ Once the degrees $\mu_i(x_i)$ (corresponding to " x_i is possible") are known, predetermined "and" and "or" operations like $f_{\&}(d_1, d_2) = \min(d_1, d_2)$ and $f_{\lor}(d_1, d_2) = \max(d_1, d_2)$ can be used to estimate the degree $\mu(y)$ to which y is possible:

$$\mu(y) = \max\{\min(\mu_1(x_1), \dots, \mu_n(x_n) : y = f(x_1, \dots, x_n)\}.$$

(Zadeh's extension principle)

From a computational viewpoint, fuzzy data processing can be reduced to interval data processing.

▶ An alpha-cut $(X_i(\alpha))$ is an alternative way to describe a membership function $\mu_i(x_i)$. For each $\alpha \in [0, 1]$

$$X_i(\alpha) = \{x_i : \mu_i(x_i) \ge \alpha\}$$

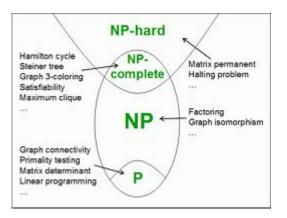
For alpha-cuts, Zadeh's extension principle takes the following form: if $y = f(x_1, ..., x_n)$ then for every α , we have

$$Y(\alpha) = \{f(x_1, \ldots, x_n) : x_i \in X_i(\alpha)\}.$$

Compare this to the main problem of interval computations

$$\mathbf{y} = [y, \overline{y}] = \{f(x_1, \dots, x_n) : x_1 \in \mathbf{x}_1, \dots, \mathbf{x}_n\}.$$

What is NP Hard?



If $P \neq NP$ (as most people in CS believe), then NP-Hard problems cannot be solved in time bounded by the polynomial of the length of the input.

What is NP Hard?

- In general, the main problem of Interval Computations is NP-hard.
- ► This was proven by reducing the Propositional Satisfiability (SAT) problem to Interval Computations
- There are many NP-Hardness results related to Interval Computation.
- Recent work showed that some simple interval computation problems are NP-hard: e.g., the problem of computing the range of sample variance under interval uncertainty

$$V = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E)^2$$
, where $E = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$

Single Use Expressions (SUE)

➤ A SUE expression is one in which each variable is used at most once. Examples of SUE are:

SUE Not SUE $a \cdot (b+c) \qquad a \cdot b + a \cdot c$ $\frac{1}{1+x_2/x_1} \qquad \frac{x_1}{x_1+x_2}$ (For propositional formulas) $(v_1 \vee \neg v_2 \vee v_3) \& (\neg v_4 \vee v_5) \qquad (v_1 \vee \neg v_2 \vee v_3) \& (v_1 \vee \neg v_4 \vee v_5)$

➤ Single Use Expressions (SUE) is a known case when naive interval computations lead to an exact range.

(ASIDE) Naive Interval Computations

- ▶ Example $y = x \cdot (1 x)$ where $x \in [0, 1]$
- First parse the expression into elementary operations
 - $r_1 = 1 x$
 - $y = x \cdot r_1$
- and then apply interval arithmetic to each step
 - $r_1 = [1,1] [0,1] = [1,1] + [-1,0] = [0,1]$
 - $y = [0,1] \cdot [0,1] = [min(0,0,0,1), max(0,0,0,1)] = [0,1]$
- ▶ [0, 1] is an enclosure for the exact range [0, 0.25].

Naive Interval Computations works for SUE case

► Example of $y = \frac{x_1}{x_1 + x_2}$ converted to SUE.

$$\frac{1}{1 + \frac{x_2}{x_1}} \text{ where } x_1 \in [1, 3], x_2 \in [2, 4]$$

First parse the expression into elementary operations

$$r_1 = x_2/x_1$$

 $r_2 = 1 + r_1$
 $y = 1/r_2$

and then apply interval arithmetic to each step

$$r_1 = \frac{[2,4]}{[1,3]} = [2,4] \cdot \frac{1}{[1,3]} = [2,4] \cdot \left[\frac{1}{3}, \frac{1}{1}\right] = [0.66, 4.0]$$

 $r_2 = [1,1] + [0.66, 4.0] = [1.66, 5.0]$

$$y = \frac{1}{[1.66, 5.0]} = \left[\frac{1}{5.0}, \frac{1}{1.66}\right] = [0.2, 0.6]$$

which is the exact range.

Double Use Expressions (DUE)

➤ A DUE expression is one in which each variable is used at most twice. Examples of DUE are:

DUE	Not DUE
$a \cdot b + a \cdot c$	$a \cdot (b+c)$
<i>X</i> ₁	1
$\overline{x_1 + x_2}$	$1 + \frac{x_2}{x_1}$
(For propositional formulas)	<i>X</i> ₁
$(v_1 \vee \neg v_2 \vee v_3) \& (v_1 \vee \neg v_4)$	$(v_1 \lor \neg v_2 \lor v_3) \& (\neg v_4 \lor v_5)$

➤ Double Use Expressions (DUE) are known to cause excess width in naive interval computations but that does not necessarily make it NP-Hard.

Satisfiability

- Propositional Satisfiability (SAT) was the first problem proved to be NP-Hard, so it is a good tool to begin checking algorithms.
- SAT tries to make the given formula true by assigning a Boolean value to each variable.
- SAT uses propositional formulas in Conjunctive Normal Form (CNF) which are conjunctions of clauses containing disjunctions of (possibly negated) literals.
- A 3-SAT problem is a SAT problem in CNF with three variables in each clause.

$$(v_1 \vee \neg v_2 \vee v_3) \& (v_1 \vee \neg v_4 \vee v_5) \& \dots,$$

Satisfiability of SUE

▶ In a SUE expression, each variable occurs only once

$$(v_1 \vee \neg v_2 \vee v_3) \& (v_4 \vee v_5 \vee \neg v_6) \& \ldots,$$

- Satisfiability of SUE is easy:
 - Set one variable in every clause to evaluate to true:
 - A non-negated variable is set to true or
 - A negated variable is set to false, causing it to evaluate to true.

Satisfiability of DUE

In a DUE expression, each variable occurs at most twice

$$(v_1 \vee \neg v_2 \vee v_3) \& (v_1 \vee v_4 \vee \neg v_5) \& \ldots,$$

Satisfiability of DUE is also done by clause elimination using an equivalent formula:

$$(v_i \lor r)\&(v_i \lor r')\&R$$

where r and r' are remainders of the clauses

where r and r' are remainders of the clauses and R is the remainder of the expression.

The algorithm is not much harder than SUE but longer and more tedious.

DUE in Interval Computations

 Computing the range of variance under interval uncertainty has the form

$$V = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E)^2$$
, where $E = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$;

- computing the variance with IC is NP-Hard;
- computing the variance is DUE;
- so a known NP-Hard problem reduces to DUE;
- ▶ thus, DUE under Interval Uncertainty is NP-Hard.

Interval Linear Equations

Sometimes, there are only implicit relations between x_i and y and the simplest case is when the relations are linear and y_1, \ldots, y_n are determined by

$$\sum_{j=1}^n a_{ij} \cdot y_j = b_i,$$

where we know interval bounds for a_{ij} and b_i

- ▶ It is known that computing the desired ranges $y_1, ..., y_n$ is NP-Hard when a_{ij} takes values from \mathbf{a}_{ij} and b_i takes values from intervals \mathbf{b}_i .
- ▶ However, it is feasible to check, given values x_1, \ldots, x_n , if there exist values $a_{ij} \in \mathbf{a}_{ij}$ and $b_i \in \mathbf{b}_i$ for which the system is true.

- For every i, $\sum_{j=1}^{n} a_{ij} \cdot y_j$ is SUE, so its range can be found using naive interval computation.
- ► For every *i*, however, the range and the interval **b**_i must have a non-empty intersection

$$\left(\sum_{j=1}^n \mathbf{a}_{ij} \cdot \mathbf{y}_j\right) \cap \mathbf{b}_i \neq \emptyset.$$

Checking whether two intervals have an intersection is trivial:

$$[\underline{x}_1, \overline{x}_1] \cap [\underline{x}_2, \overline{x}_2] \neq \emptyset \Leftrightarrow \underline{x}_1 \leq \overline{x}_2 \& \underline{x}_2 \leq \overline{x}_1.$$

So, there is a feasible algorithm to check if a solution satisfies the problem.

Parametric Interval Linear Systems

- Consider a parametric system.
 - ► There are k parameters p_i, \ldots, p_k that take values from known intervals $\mathbf{p}_1, \ldots, \mathbf{p}_k$ and
 - ightharpoonup values a_{ij} and b_i are linear functions of these variables

$$a_{ij} = \sum_{\ell=1}^k a_{ij\ell} \cdot p_\ell$$
 and $b_i = \sum_{\ell=1}^k b_{i\ell} \cdot p_\ell$

- This problem is more general than the system of linear equations so finding the range for this problem is NP-Hard as well.
- ▶ However, it is possible to check whether a given tuple $x = (x_1, \dots, x_n)$ is a solution to a given parametric interval linear system, i.e., whether there exist values p_ℓ for which $\sum_{i=1}^n a_{ij} \cdot y_j = b_i$.

- ▶ There is recent work by E. D. Popova showing that, if each parameter p_i occurs only in one equation (even if it occurs several times in the equation), then checking is still feasible.
- ▶ In the SUE case, consider one equation at a time since no two equations share a parameter. For each i, the corresponding equation $\sum_{j=1}^{n} a_{ij} \cdot y_j = b_i$ takes the form

$$\sum_{j=1}^n \sum_{\ell=1}^k a_{ij\ell} \cdot y_j \cdot p_\ell = \sum_{\ell=1}^k b_{i\ell} \cdot p_\ell,$$

i.e., the (SUE) linear form

$$\textstyle\sum_{\ell=1}^k A_{i\ell}\cdot p_\ell=0, \text{ where } A_{i\ell}=\textstyle\sum_{j=1}^n a_{ij\ell}\cdot y_j-b_{i\ell},$$

and we already know that checking the solvability of such an equation is feasible.

What If?

- What if each parameter can occur several times?
 - When only linear dependencies are allowed, there is a feasible algorithm that checks if a tuple x belongs to a solution set.
- ▶ What if each parameter can occur in only one equation but the dependence on a_{ij} and b_i on the parameters can be quadratic?
 - The problem of checking if a tuple x belongs to a solution set is NP-Hard
 - even when each parameter occurs in only one equation.

Questions?

APPENDIX A: Satisfiability of DUE Expressions

In a DUE expression, each variable occurs at most twice

$$(v_1 \vee \neg v_2 \vee v_3) \& (v_1 \vee v_4 \vee \neg v_5) \& \ldots,$$

- Satisfiability uses clause elimination similar to SUE.
- Remember, for the moment, that each clause has the form (v_i ∨ r)&R where r is the remainder of the clause and R is the remainder of the expression.
 - ► First, delete every clause containing some *v_i* that has a single use in the expression.
 - ▶ Second, delete pairs of clauses where v_i is either negated or non-negated in both clauses.
 - Next, delete newly-formed single use clauses.

APPENDIX A: Satisfiability of DUE Expressions

- Finally, the only remaining clauses are pairs in the form (v_i ∨ r)&(¬v_i ∨ r')&R which is equivalent to a new formula (r ∨ r')&R
- ▶ If the original formula $(v_i \lor r) \& (\neg v_i \lor r') \& R$ is satisfied:
 - ▶ If v_i is true, then r' is true so $(r \lor r')$ is true.
 - ▶ If $\neg v_i$ is true, then r is true so $(r \lor r')$ is true.
- ▶ If the formula $(r \lor r')$ &R is satisfied:
 - ▶ If *r* is true, then v_i is false so $(\neg v_i \lor r')$ is true.
 - ▶ If r' is true, then v_i is true so $(v_i \lor r)$ is true.
- ▶ In both cases, $(v_i \lor r) \& (\neg v_i \lor r') \& R$) is true.
- So, DUE expressions in SAT is satisfiable.

APPENDIX B: If each parameter occurs several times

▶ The problem is checking whether there are values p_{ℓ} that satisfy the system of linear equations

$$\begin{array}{l} \sum\limits_{\ell=1}^k A_{i\ell} \cdot p_\ell = 0 \\ \text{and linear inequalities} \\ \underline{p}_\ell \leq p_\ell \leq \overline{p}_\ell \\ \text{(that describe interval constraints on } p_\ell). \end{array}$$

- It is known that checking consistency of a given system of linear equations and inequalities is a feasible case of linear programming.
- ► So, any feasible algorithm for solving linear programming problems solves the above problem as well.

APPENDIX C: Dependence on Parameters is Quadratic

▶ What if the dependence of a_{ij} and b_i on the parameters can be quadratic

$$a_{ij} = a_{ij0} + \sum_{\ell=1}^k a_{ij\ell} \cdot p_\ell + \sum_{\ell=1}^k \sum_{\ell'=1}^k a_{ij\ell\ell'} \cdot p_\ell \cdot p_{\ell'};$$

$$b_i = b_{i0} + \sum_{\ell=1}^k b_{i\ell} \cdot p_{\ell} + \sum_{\ell=1}^k \sum_{\ell=1}^k b_{i\ell\ell'} \cdot p_{\ell} \cdot p_{\ell'}.$$

▶ We already know that finding the range of a quadratic function $f(p_1, ..., p_k)$ under interval uncertainty $p_\ell \in \mathbf{p}_\ell$, is NP-hard.

APPENDIX C: Dependence on Parameters is Quadratic

- ▶ It is also true that checking, for a given value v_0 , where there exists values $p_\ell \in \mathbf{p}_\ell$ for which $f(p_1, \dots, p_k) = v_0$ is also NP-hard.
- This NP-hard problem can be reduced to our problem by considering a very simple system consisting of a single equation:

$$a_{11} \cdot y_1 = b_1$$
, with $y_1 = 1$, $b_1 = v_0$, and $a_{11} = f(p_1, \dots, p_k)$.

The tuple x = (1) belongs to the solution set if and only if there exist values p_{ℓ} for which $f(p_1, \dots, p_k) = v_0$.

 So, allowing the dependence of parameters to be quadratic is NP-hard.

Bibliography

- C. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*, MIT Press, Boston, Massachusetts, 2009.
- S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, "Computing Variance for Interval Data is NP-Hard", *ACM SIGACT News*, 2002, Vol. 33, No. 2, pp. 108–118.
- S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, "Exact Bounds on Finite Populations of Interval Data", *Reliable Computing*, 2005, Vol. 11, No. 3, pp. 207–233.
- A. A. Gaganov, Computational complexity of the range of the polynomial in several variables, Leningrad University, Math. Department, M.S. Thesis, 1981 (in Russian).
- A. A. Gaganov, "Computational complexity of the range of the polynomial in several variables", *Cybernetics*, 1985, pp. 418–421.

- E. Hansen, "Sharpness in interval computations", *Reliable Computing*, 1997, Vol. 3, pp. 7–29.
- L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, *Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics*, Springer-Verlag, London, 2001.
- G. Klir and B. Yuan, *Fuzzy Sets and Fuzzy Logic: Theory and Applications*, Upper Saddle River, New Jersey: Prentice Hall, 1995.
- V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complexity and feasibility of data processing and interval computations, Kluwer, Dordrecht, 1998.
- R. E. Moore, R. B. Kearfott, and M. J. Cloud, *Introduction to Interval Analysis*, SIAM Press, Philadelphia, Pennsylviania, 2009.
- H. T. Nguyen and E. A. Walker, *First Course on Fuzzy Logic*, CRC Press, Boca Raton, Florida, 2006.

- E. D. Popova, "Explicit Characterization of a Class of Parametric Solution Sets", *Compt. Rend. Acad. Bulg. Sci.*, 2009, Vol. 62, No. 10, pp. 1207–1216.
- E. D. Popova, "Characterization of paremetric solution sets", Abstracts of the 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN'2010, Lyon, France, September 27–30, 2010, pp. 118–119.
- S. Rabinovich, *Measurement Errors and Uncertainties:* Theory and Practice, Springer Verlag, New York, 2005.

