Need for Expert Knowledge (and Soft Computing) in Cyberinfrastructure-Based Data Processing

Vladik Kreinovich

Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA vladik@utep.edu http://www.cs.utep.edu/vladik Need for . . . What Is ... Cyberinfrastructure: . . . Part 1: Need for Data Traditional Statistical Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page **>>** Page 1 of 49 Go Back Full Screen Close Quit

1. Need for Cyberinfrastructure

- A large amount of data has been collected and stored at different locations.
- Researchers and practitioners need easy and fast access to all the relevant data.
- For example, a geoscientist needs access to:
 - a state geological map (which is usually stored at the state's capital),
 - NASA photos (stored at NASA Headquarters and/or at one of corresponding NASA centers),
 - seismic data stored at different seismic stations, etc.
- An environmental scientist needs access:
 - to satellite radar data,
 - to data from bio-stations,
 - to meteorological data, etc.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 2 of 49 Go Back Full Screen Close Quit

2. What Is Cyberinfrastructure

- Cyberinfrastructure is a general name for hardware/software tools that facilitate such data transfer/processing.
- Ideally, this data transfer and processing should be as easy and convenient as a google search.
- At present, the main challenges in cyberinfrastructure design are related to the actual development of:
 - the corresponding hardware tools and
 - the corresponding software tools.
- Most existing cyberinfrastructure tools use existing well defined algorithms.
- The results of using cyberinfrastructure are exciting.
- However, there is still room for improvement.

What Is...

Need for . . .

Cyberinfrastructure: . . .

Part 1: Need for Data..

Traditional Statistical...

Part 2: Use of Expert.

Determining Earth . . .

Part 3: How to Best . .

Home Page

Title Page

⋈

4

Page 3 of 49

Go Back

E.J. S.

Full Screen

Close

3. Cyberinfrastructure: Expert Knowledge Is Needed

- Current cyberinfrastructure results are based only on data processing.
- Some of these results do not make geological sense.
- It is necessary to take into account expert knowledge.
- Specifically, we must incorporate expert knowledge directly into the cyberinfrastructure.
- Some expert knowledge is formulated in precise terms; these types of knowledge are easier to incorporate.
- A large part of expert knowledge is formulated by using imprecise (fuzzy) words (like "small").
- To deal with such knowledge, fuzzy techniques have been invented.
- So, to incorporate this knowledge, it is natural to use fuzzy techniques.

Need for . . . What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 4 of 49 Go Back Full Screen Close Quit

4. What We Do In This Talk

- In this talk, we describe several problems in which such incorporation is needed.
- These problems come from our experience from geoand environmental applications of cyberinfrastructure.
- First, we show that expert knowledge is needed even when we "fuse" data from different sources.
- Then, we show how expert knowledge can be used in *processing* data.
- Finally, we show how expert knowledge can be used in selecting the best ways of *getting* the data.

5. Part 1: Need for Data Fusion

- In many practical situations, we have several results $\widetilde{x}^{(1)}, \ldots, \widetilde{x}^{(n)}$ of measuring the same quantity x.
- These results are different since measurements are never 100% accurate.
- It is know that by combining different measurement results, we increase accuracy.
- Simplest case: we use the same measuring instrument for all measurements.
- In this case, an arithmetic average reduces the st. dev. by a factor of \sqrt{n} :

$$\widetilde{x} = \frac{\widetilde{x}^{(1)} + \ldots + \widetilde{x}^{(n)}}{n}.$$

• When we fuse measurements of different accuracy, we need to use different weights for different values $\tilde{x}^{(i)}$.

6. Data Fusion: Challenge

- When we fuse measurements of different accuracy, we need to use different weights for different values $\widetilde{x}^{(i)}$.
- Sometimes, we can find the actual values and thus, estimate the accuracy of different measurements.
- In other cases e.g., in geosciences it is difficult to find the actual density at depth 40 km.
- Hence, in geosciences, it is difficult to gauge the accuracy of seismic, gravity, and other techniques.
- In this case, we need to estimate the accuracies from the observations.
- We will show that in this case, seemingly reasonable statistical methods do not work well.
- Thus, statistical methods need to be supplemented with expert knowledge.

7. Traditional Statistical Methods: Reminder

- In many cases, the measurement error is caused by many different causes.
- It is known that the distribution of the sum of many small random variables is \approx normally distributed.
- So, we can conclude that the measurement errors are normally distributed, with probability density

$$\rho(\widetilde{x}) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left(-\frac{(\widetilde{x} - x)^2}{2\sigma^2}\right).$$

- If we have n results $\widetilde{x}^{(i)}$ of independent measurements, then prob. is prop. to $\rho = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left(-\frac{(\widetilde{x}^{(i)} x)^2}{2\sigma^2}\right)$.
- Maximum Likelihood Method: select most probable x and σ , for which prob. (hence ρ) is the largest.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 8 of 49 Go Back Full Screen Close Quit

3. Traditional Statistical Methods (cont-d)

• Maximizing $\rho = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left(-\frac{(\widetilde{x}^{(i)} - x)^2}{2\sigma^2}\right)$ is equivalent to minimizing

$$\psi = -\ln(\rho) = \text{const} + n \cdot \ln(\sigma) + \sum_{i=1}^{n} \frac{(\widetilde{x}^{(i)} - x)^2}{2\sigma^2}.$$

- W.r.t. x, we get the Least Squares method which leads to the arithmetic average $x = \frac{1}{n} \cdot \sum_{i=1}^{n} \widetilde{x}^{(i)}$.
- Differentiating ψ w.r.t. σ and equating to 0, we get

$$\frac{n}{\sigma} - \sum_{i=1}^{n} \frac{(\widetilde{x}^{(i)} - x)^2}{\sigma^3} = 0.$$

• So, we get the usual estimate $\sigma^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (\widetilde{x}^{(i)} - x)^2$.

Need for . . . What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data.. Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert.. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 9 of 49 Go Back Full Screen

Close

9. Case of Different Measuring Instruments (MI): Surprising Problem

- Situation: for different quantities x_j , j = 1, ..., m, we have measurement results $\widetilde{x}_i^{(i)}$ corr. to diff. MI, w/diff. σ_i .
- The resulting probability is proportional to

$$\rho = \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi} \cdot \sigma_i} \cdot \exp\left(-\frac{(\widetilde{x}_j^{(i)} - x_j)^2}{2\sigma_i^2}\right).$$

- Seemingly natural idea: use Maximum Likelihood method, i.e., find x_i and σ_i for which $\rho \to \max$.
- We tried, and found that at maximum, one of σ_i is 0.
- We then theoretically confirmed: that maximum $\rho_{\text{max}} = \infty$ is attained:
 - when $\sigma_{i_0} = 0$ for some i_0 , and
 - when $x_j = \widetilde{x}_j^{(i_0)}$ for all j.

Need for . . . What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best . . . Home Page Title Page **>>** Page 10 of 49 Go Back Full Screen Close

10. Analysis of the Problem

- We know: that all the measuring instruments are imperfect, i.e., $\sigma_i > 0$.
- From the mathematical viewpoint: we get $\sigma_{i_0} = 0$ for some i_0 .
- This mathematical solution is not physically meaningful.
- To avoid this non-physical solution, we need to explicitly add the requirement that $\sigma_i > 0$ for all i.
- This *crisp* requirement does not help: by taking smaller and smaller σ_{i_0} , we can get ρ as large as possible.
- Intuitively, what we need is a fuzzy requirement that all σ_i are not too small.
- This fuzzy requirement enables us to avoid non-physical values of σ_i .

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 11 of 49 Go Back Full Screen Close Quit

11. Towards an Algorithm

•
$$\rho = \prod_{i=1}^n \prod_{j=1}^m \frac{1}{\sqrt{2\pi} \cdot \sigma_i} \cdot \exp\left(-\frac{(\widetilde{x}_j^{(i)} - x_j)^2}{2\sigma_i^2}\right) \to \max.$$

•
$$\psi = -\ln(\rho) = n \cdot \sum_{i=1}^{n} \ln(\sigma_i) + \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{(\widetilde{x}_j^{(i)} - x_j)^2}{2\sigma_i^2} \to \min.$$

• Differentiating ψ w.r.t. x_j and σ_i , we get:

$$x_{j} = \frac{\sum_{i=1}^{n} \sigma_{i}^{-2} \cdot \widetilde{x}_{j}^{(i)}}{\sum_{i=1}^{n} \sigma_{i}^{-2}}; \quad \sigma_{i}^{2} = \frac{1}{m} \cdot \sum_{j=1}^{m} (\widetilde{x}_{j}^{(i)} - x_{j})^{2}.$$

- We first take $\sigma_i = \text{const}$, then iteratively compute:
- (1) x_j from σ_j , (2) σ_j from x_i , (3) x_j from σ_j , ...
- We stop when one of σ_i becomes too small (2-3 cycles).
- We return results of the previous cycle (cf. astrometry).

Need for . . .

What Is...

Cyberinfrastructure: . . .

Part 1: Need for Data...

Traditional Statistical...

Case of Different...

Part 2: Use of Expert . . .

Determining Earth . . .

Part 3: How to Best...

Home Page

Title Page

Go Back

Full Screen

Close

12. Part 2: Use of Expert Knowledge in Actual Data Processing

- We need to reconstruct the values of the quantities of interest from the measurement results.
- Geosciences example: reconstructing density at different depths and different locations.
- Often, several drastically different density distributions are consistent with the same observations.
- Such problems are called "ill-posed".
- Out of all these distributions, we need to select the physically meaningful one(s).
- This is where expert knowledge is needed, to describe what "physically meaningful" means.
- On the example of the above geophysical problem, we show how to use this expert knowledge.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data Traditional Statistical Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 13 of 49 Go Back Full Screen Close Quit

13. Determining Earth Structure Is Important

- *Importance:* civilization greatly depends on the things we extract from the Earth: oil, gas, water.
- *Need* is growing, so we must find new resources.
- *Problem:* most easy-to-access mineral resources have been discovered.
- Example: new oil fields are at large depths, under water, in remote areas so drilling is very expensive.
- Objective: predict resources before we invest in drilling.
- *How:* we know what structures are promising.
- Example: oil and gas concentrate near the top of (natural) underground domal structures.
- Conclusion: to find mineral resources, we must determine the structure at diff. depths z and locations (x, y).

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 14 of 49 Go Back Full Screen Close Quit

14. Data that We Can Use to Determine the Earth Structure

- Available measurement results: those obtained without drilling boreholes.
- Examples:
 - gravity and magnetic measurements;
 - travel-times t_i of seismic ways through the earth.
- Need for active seismic data:
 - passive data from earthquakes are rare;
 - to get more information, we make explosions, and measure how the resulting seismic waves propagate.
- Resulting seismic inverse problem:
 - we know the travel times t_i ;
 - we want to reconstruct velocities at different depths.

Need for . . .

What Is...

Cyberinfrastructure: . . .
Part 1: Need for Data

Traditional Statistical

Case of Different . . .

Part 2: Use of Expert . . .

Part 3: How to Best...

Determining Earth . . .

Home Page
Title Page

44 >>

4

Page 15 of 49

Go Back

Full Screen

Close

5. Algorithm for the Forward Seismic Problem

- We know: velocities v_j in each grid cell j.
- We want to compute: traveltimes t_i .
- First step: find shortest (in time) paths.
- Within cell: path is a straight line.
- On the border: between cells with velocities v and v', we have Snell's law $\frac{\sin(\varphi)}{v} = \frac{\sin(\varphi')}{v'}$.
- Comment: if $\sin(\varphi') > 1$, the wave cannot get penetrate into the neighboring cell; it bounces back.
- Resulting traveltimes: $t_i = \sum_j \frac{\ell_{ij}}{v_j}$, where ℓ_{ij} is the length of the part of *i*-th path within cell *j*.
- Simplification: use slownesses $s_j \stackrel{\text{def}}{=} \frac{1}{v_j}$; $t_i = \sum_j \ell_{ij} \cdot s_j$.

What Is...

Need for . . .

Cyberinfrastructure: . . .

Part 1: Need for Data...

Traditional Statistical...

Case of Different . . .

Part 2: Use of Expert . . .

Determining Earth...

Part 3: How to Best...

Home Page
Title Page

Page 16 of 49

Go Back

Full Screen

Close

16. Algorithm for the Inverse Problem: General Description

- The most widely used: John Hole's iterative algorithm.
- Starting point: reasonable initial slownesses.
- On each iteration: we use current (approximate) slownesses s_j to compute the travel-times $t_i = \sum_i \ell_{ij} \cdot s_j$.
- Fact: measured travel-times \widetilde{t}_i are somewhat different: $\Delta t_i \stackrel{\text{def}}{=} \widetilde{t}_i t_i \neq 0$.
- Objective: find Δs_j so that $\sum \ell_{ij} \cdot (s_j + \Delta s_j) = \widetilde{t}_i$.
- Problem: we have many observations n, and computation time $\sim n^3$ too long, so we need faster techniques.
- Stopping criterion: when average error $\frac{1}{n}\sum_{i=1}^{n}(\Delta t_i)^2$ is below noise.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 17 of 49 Go Back Full Screen Close Quit

7. Algorithm for the Inverse Problem: Details

- Objective (reminder): find Δs_j s.t. $\sum \ell_{ij} \cdot \Delta s_j = \Delta t_i$.
- Simplest case: one path.
- Specifics: under-determined system: 1 equation, many unknowns Δs_j .
- *Idea*: no reason for Δs_j to be different: $\Delta s_j \approx \Delta s_{j'}$.
 - Formalization: minimize $\sum_{j,j'} (\Delta s_j \Delta s_{j'})^2$ under the constraint $\sum \ell_{ij} \cdot \Delta s_j = \Delta t_i$.
- Solution: $\Delta s_j = \frac{\Delta t_i}{L_i}$ for all j, where $L_i = \sum_j \ell_{ij}$.
 - Realistic case: several paths; we have Δs_{ij} for different paths i.
- *Idea:* least squares $\sum_{i} (\Delta s_{i} \Delta s_{ij})^{2} \rightarrow \min$.
- Solution: Δs_j is the average of Δs_{ij} .

What Is...

Need for . . .

Cyberinfrastructure: . . .

Part 1: Need for Data...

Traditional Statistical...

Case of Different . . .

Part 2: Use of Expert . . .

Determining Earth...
Part 3: How to Best...

Home Page

Title Page

44 >>

Page 18 of 49

4

Go Back

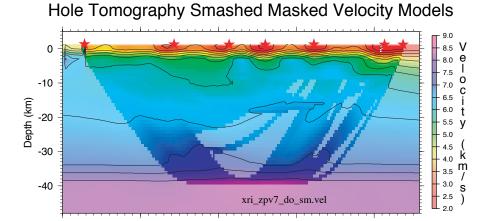
Full Screen

Clos

Close

18. Successes, Limitations, Need for Prior Knowledge

- Successes: the algorithm usually leads to reasonable geophysical models.
- Limitations: often, the resulting velocity model is not geophysically meaningful.
- Example: resulting velocities outside of the range of reasonable velocities at this depth.
- It is desirable: incorporate the expert knowledge into the algorithm for solving the inverse problem.



Need for . . . What Is... Cyberinfrastructure: . . . Part 1: Need for Data.. Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 20 of 49 Go Back Full Screen Close Quit

19. Case of Interval Prior Knowledge

- *Idea*: for each cell j, a geophysicist provides an interval $[\underline{s}_j, \overline{s}_j]$ of possible values of s_j .
- Hole's code: along each path i, we find corrections Δs_{ij} that minimize

$$\sum_{j,j'} (\Delta s_{ij} - \Delta s_{ij'})^2$$

under the constraint

$$\sum_{j=1}^{c} \ell_{ij} \cdot \Delta s_{ij} = \Delta t_i.$$

• *Modification:* we must minimize under the additional constraints

$$\underline{s}_j \le s_j^{(k)} + \Delta s_{ij} \le \overline{s}_j.$$

• What we designed: an $O(c \cdot \log(c))$ algorithm for solving this new problem.

20. Main Idea of an Algorithm

- *Idea* method of alternating projections:
 - first, add a correction that satisfy the first constraint,
 - then, the additional correction that satisfies the second constraint,
 - etc.
- Specifics:
 - first, add equal values Δs_{ij} to minimize Δt_i ;
 - restrict the values to the nearest points from $[\underline{s}_j, \overline{s}_j]$,
 - repeat until converges.
- Comment: this way, we can also use other prior knowledge (e.g., probabilistic).

- Case: $\Delta t_i > 0$; for $\Delta t_i < 0$, we have similar formulas.
- Compute, for each cell j,

$$\underline{\Delta}_j = \underline{s}_j - s_j^{(k-1)} \text{ and } \overline{\Delta}_j = \overline{s}_j - s_j^{(k-1)}.$$

• Sort values Δ_i into

$$\overline{\Delta}_{(1)} \leq \overline{\Delta}_{(2)} \leq \ldots \leq \overline{\Delta}_{(c)}.$$

• For every p from 0 to c, compute:

$$A_0 = 0, \ \mathcal{L}_0 = L_i, \ A_p = A_{p-1} + \ell_{i(p)} \cdot \overline{\Delta}_{(p)}, \ \mathcal{L}_p = \mathcal{L}_{p-1} - \ell_{i(p)}.$$

• Compute $S_p = A_p + \mathcal{L}_p \cdot \Delta_{(p+1)}$, and find p s.t.

$$S_{p-1} \le \Delta t_i < S_p.$$

- Take $\Delta s_{i(j)} = \overline{\Delta}_j$ for $j \leq p$, and $\Delta s_{(j)} = \frac{\Delta t_i A_p}{f_m}$ else.
- Then, average Δs_{ij} over paths i.

Need for . . .

What Is . . .

Cyberinfrastructure: . . . Part 1: Need for Data . .

Traditional Statistical . . .

Case of Different . . .

Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best . . .

Home Page

Title Page

>>

Page 23 of 49

Go Back

Full Screen

Close

22. Explicit Expert Knowledge: Fuzzy Uncertainty

- Experts can usually produce a wide interval of which they are practically 100% certain.
- In addition, experts can also produce narrower intervals about which their degree of certainty is smaller.
- As a result, instead of a *single* interval, we have a *nested* family of intervals corr. to diff. levels of uncertainty.
- In effect, we get a fuzzy interval (of which different intervals are α -cuts).
- Previously: a solution is satisfying or not.
- New idea: a satisfaction degree d.
- Specifics: d is the largest α for which all s_i are within the corresponding α -cut intervals.

23. How We Can Use Fuzzy Uncertainty

- Objective: find the largest possible value α for which the slownesses belong to the α -cut intervals.
- Possible approach:
 - try $\alpha = 0$, $\alpha = 0.1$, $\alpha = 0.2$, etc., until the process stops converging;
 - the solution corresponding to the previous value α is the answer.

• Comment:

- this is the basic straightforward way to take fuzzy-valued expert knowledge into consideration;
- several researchers successfully used fuzzy expert knowledge in geophysics (Nikravesh, Klir, et al.).

24. Part 3: How to Best Acquire the Data?

- The above two applications are related to processing the existing data.
- In many practical situations, the data from the existing instruments is not sufficient.
- So, new measuring instruments are needed.
- E.g.: to get a better understanding of weather and climate processes, we need to place more instruments in Arctic, Antarctic, desert areas.
- Which are the best locations for these new instruments?
- We would like to gain as much information as possible from these new instruments.
- The problem is that we do not know exactly what processes we will observe.

25. How to Best Acquire the Data? (cont-d)

- We would like to gain as much information as possible from these new instruments.
- The problem is that we do not know exactly what processes we will observe.
- This uncertainty is what motivates us to build the new stations in the first place.
- Because of this uncertainty, to make a reasonable decision, we need to use expert knowledge.
- NASA faced a similar problem when selecting the Moon landing sites.
- We will used NASA's experience to find the optimal location of meteorological instruments.

26. Case Study: Detailed Description

- Objective: select the best location of a sophisticated multi-sensor meteorological tower.
- Constraints: we have several criteria to satisfy.
- Example: the station should not be located too close to a road.
- *Motivation:* the gas flux generated by the cars do not influence our measurements of atmospheric fluxes.
- Formalization: the distance x_1 to the road should be larger than a threshold t_1 : $x_1 > t_1$, or $y_1 \stackrel{\text{def}}{=} x_1 t_1 > 0$.
- Example: the inclination x_2 at the tower's location should be smaller than a threshold t_2 : $x_2 < t_2$.
- *Motivation:* otherwise, the flux determined by this inclination and not by atmospheric processes.

27. General Case

- In general: we have several differences y_1, \ldots, y_n all of which have to be non-negative.
- For each of the differences y_i , the larger its value, the better.
- Our problem is a typical setting for multi-criteria optimization.
- A most widely used approach to multi-criteria optimization is weighted average, where
 - we assign weights $w_1, \ldots, w_n > 0$ to different criteria y_i and
 - select an alternative for which the weighted average

$$w_1 \cdot y_1 + \ldots + w_n \cdot y_n$$

attains the largest possible value.

Need for . . . What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 29 of 49 Go Back Full Screen Close Quit

8. Limitations of the Weighted Average Approach

- In general: the weighted average approach often leads to reasonable solutions of the multi-criteria problem.
- In our problem: we have an additional requirement that all the values y_i must be positive. So:
 - when selecting an alternative with the largest possible value of the weighted average,
 - we must only compare solutions with $y_i > 0$.
- We will show: under the requirement $y_i > 0$, the weighted average approach is not fully satisfactory.
- Conclusion: we need to find a more adequate solution.

29. Limitations of the Weighted Average Approach: Details

- The values y_i come from measurements, and measurements are never absolutely accurate.
- The results \widetilde{y}_i of the measurements are not exactly equal to the actual (unknown) values y_i .
- If: for some alternative $y = (y_1, \dots, y_n)$
 - we measure the values y_i with higher and higher accuracy and,
 - based on the measurement results \tilde{y}_i , we conclude that y is better than some other alternative y'.
- Then: we expect that the actual alternative y is indeed better than y' (or at least of the same quality).
- Otherwise, we will not be able to make any meaningful conclusions based on real-life measurements.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical... Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 31 of 49 Go Back Full Screen Close Quit

The Above Natural Requirement Is Not Al-30. ways Satisfied for Weighted Average

- Simplest case: two criteria y_1 and y_2 , w/weights $w_i > 0$.
- If $y_1, y_2, y_1', y_2' > 0$, and $w_1 \cdot y_1 + w_2 \cdot y_2 > w_1 \cdot y_1' + w_2 \cdot y_2'$, then $y = (y_1, y_2) \succ y' = (y'_1, y'_2)$.
- If $y_1 > 0$, $y_2 > 0$, and at least one of the values y'_1 and y_2' is non-positive, then $y = (y_1, y_2) \succ y' = (y_1', y_2')$.
- Let us consider, for every $\varepsilon > 0$, the tuple $y(\varepsilon) \stackrel{\text{def}}{=} (\varepsilon, 1 + w_1/w_2)$, and y' = (1, 1).
- In this case, for every $\varepsilon > 0$, we have $w_1 \cdot y_1(\varepsilon) + w_2 \cdot y_2(\varepsilon) = w_1 \cdot \varepsilon + w_2 + w_2 \cdot \frac{w_1}{w_2} = w_1 \cdot (1+\varepsilon) + w_2$
- and $w_1 \cdot y_1' + w_2 \cdot y_2' = w_1 + w_2$, hence $y(\varepsilon) > y'$.
- However, in the limit $\varepsilon \to 0$, we have $y(0) = \left(0, 1 + \frac{w_1}{w_2}\right)$, with $y(0)_1 = 0$ and thus, $y(0) \prec y'$.

Need for . . .

What Is . . .

Cyberinfrastructure: . . .

Part 1: Need for Data . . Traditional Statistical . . .

Case of Different . . .

Part 2: Use of Expert.

Determining Earth . . .

Part 3: How to Best . . .

Home Page

Title Page **>>**

Page 32 of 49

Go Back

Full Screen

Close

31. Heuristic Idea Motivated by Fuzzy Logic

- *Problem:* the first criterion must satisfied *and* the second criterion must be satisfied, . . .
- Fuzzy logic approach:
 - First, we estimate the degrees d_1, \ldots, d_n to which each of the constraints is satisfied.
 - Then, we use a t-norm (fuzzy analogue of "and") to combine these degrees into a single degree d.
- Simplest membership functions: triangular, for which $d_i(y_i) = k_i \cdot y_i$, with $k_i > 0$ (when $y_i > 0$).
- Selecting a t-norm: the simplest is min, but it is not smooth hence tough to optimize; next simplest is $a \cdot b$.
- Result: maximize $d = \prod_{i=1}^{n} (k_i \cdot y_i) \Leftrightarrow \text{maximize } \prod_{i=1}^{n} y_i$.
- This approach is indeed better than weighted average: e.g., if $y'(\varepsilon) \succ y$ and $y'(\varepsilon) \rightarrow y'(0)$, then $y'(0) \succeq y$.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 33 of 49 Go Back Full Screen Close Quit

32. Natural Next Idea: Use Hedges

- *Idea*: different criteria have different importance:
 - for some criteria, it is sufficient to have them somewhat satisfied;
 - for others, they must be very satisfied.
- So, instead of combing degrees d_i , we combined hedged degrees $h_i(d_i)$.
- Natural requirement: e.g., "very (a & b)" should mean the same as "very a and very b".
- Thus, $h(a \cdot b) = h(a) \cdot h(b)$ and hence, $h(a) = a^{\alpha}$.
- Conclusion: we combine $h(d_i) = d_i^{\alpha_i}$, i.e., we optimize the product $\prod_{i=1}^n y_i^{\alpha_i}$.
- What we prove: this fuzzy-motivated expression is the only expression that satisfies reasonable properties.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 34 of 49 Go Back Full Screen Close Quit

33. Towards a Precise Description

- Each alternative is characterized by a tuple of n positive values $y = (y_1, \ldots, y_n)$.
- Thus, the set of all alternatives is the set $(R^+)^n$ of all the tuples of positive numbers.
- For each two alternatives y and y', we want to tell whether
 - -y is better than y' (we will denote it by $y \succ y'$ or $y' \prec y$),
 - or y' is better than $y (y' \succ y)$,
 - or y and y' are equally good $(y' \sim y)$.
- Natural requirement: if y is better than y' and y' is better than y'', then y is better than y''.
- The relation \succ must be transitive.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 35 of 49 Go Back Full Screen Close Quit

34. Towards a Precise Description (cont-d)

- Reminder: the relation \succ must be transitive.
- Similarly, the relation \sim must be transitive, symmetric, and reflexive $(y \sim y)$, i.e., be an equivalence relation.
- An alternative description: a transitive pre-ordering relation $a \succeq b \Leftrightarrow (a \succ b \lor a \sim b)$ s.t. $a \succeq b \lor b \succeq a$.
- Then, $a \sim b \Leftrightarrow (a \succeq b) \& (b \succeq a)$, and

$$a \succ b \Leftrightarrow (a \succeq b) \& (b \not\succeq a).$$

- Additional requirement:
 - -if each criterion is better,
 - then the alternative is better as well.
- Formalization: if $y_i > y'_i$ for all i, then $y \succ y'$.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 36 of 49 Go Back Full Screen Close Quit

35. Scale Invariance: Motivation

- Fact: quantities y_i describe completely different physical notions, measured in completely different units.
- Examples: wind velocities measured in m/s, km/h, mi/h; elevations in m, km, ft.
- Each of these quantities can be described in many different units.
- A priori, we do not know which units match each other.
- Units used for measuring different quantities may not be exactly matched.
- It is reasonable to require that:
 - if we simply change the units in which we measure each of the corresponding n quantities,
 - the relations \succ and \sim between the alternatives $y = (y_1, \ldots, y_n)$ and $y' = (y'_1, \ldots, y'_n)$ do not change.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 37 of 49 Go Back Full Screen Close Quit

36. Scale Invariance: Towards a Precise Description

- Situation: we replace:
 - \bullet a unit in which we measure a certain quantity q
 - by a new measuring unit which is $\lambda > 0$ times smaller.
- Result: the numerical values of this quantity increase by a factor of λ : $q \to \lambda \cdot q$.
- Example: 1 cm is $\lambda = 100$ times smaller than 1 m, so the length q = 2 becomes $\lambda \cdot q = 2 \cdot 100 = 200$ cm.
- Then, scale-invariance means that for all $y, y' \in (R^+)^n$ and for all $\lambda_i > 0$, we have
 - $y = (y_1, \dots, y_n) \succ y' = (y'_1, \dots, y'_n)$ implies $(\lambda_1 \cdot y_1, \dots, \lambda_n \cdot y_n) \succ (\lambda_1 \cdot y'_1, \dots, \lambda_n \cdot y'_n),$
 - $y = (y_1, \dots, y_n) \sim y' = (y'_1, \dots, y'_n)$ implies $(\lambda_1 \cdot y_1, \dots, \lambda_n \cdot y_n) \sim (\lambda_1 \cdot y'_1, \dots, \lambda_n \cdot y'_n)$.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best . . . Home Page Title Page **>>** Page 38 of 49 Go Back Full Screen Close Quit

37. Formal Description

- \bullet By a total pre-ordering relation on a set Y, we mean
 - a pair of a transitive relation \succ and an equivalence relation \sim for which,
 - for every $y, y' \in Y$, exactly one of the following relations hold: $y \succ y', y' \succ y$, or $y \sim y'$.
- We say that a total pre-ordering is non-trivial if there exist y and y' for which $y \succ y'$.
- We say that a total pre-ordering relation on $(R^+)^n$ is:
 - monotonic if $y'_i > y_i$ for all i implies $y' \succ y$;
 - continuous if
 - * whenever we have a sequence $y^{(k)}$ of tuples for which $y^{(k)} \succeq y'$ for some tuple y', and
 - * the sequence $y^{(k)}$ tends to a limit y,
 - * then $y \succeq y'$.

What Is... Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 39 of 49 Go Back Full Screen Close Quit

Theorem. Every non-trivial monotonic scale-inv. continuous total pre-ordering relation on $(R^+)^n$ has the form:

$$y' = (y'_1, \dots, y'_n) \succ y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} > \prod_{i=1}^n y_i^{\alpha_i};$$

$$y' = (y'_1, \dots, y'_n) \sim y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} = \prod_{i=1}^n y_i^{\alpha_i},$$

for some constants $\alpha_i > 0$.

Comment: Vice versa,

- for each set of values $\alpha_1 > 0, \ldots, \alpha_n > 0$,
- the above formulas define a monotonic scale-invariant continuous pre-ordering relation on $(R^+)^n$.

Need for . . . What Is... Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best . . . Home Page Title Page **>>** Page 40 of 49 Go Back Full Screen Close

39. Practical Conclusion

- Situation:
 - we need to select an alternative;
 - each alternative is characterized by characteristics y_1, \ldots, y_n .
- Traditional approach:
 - we assign the weights w_i to different characteristics;
 - we select the alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot y_i.$
- New result: it is better to select an alternative with the largest value of $\prod_{i=1}^{n} y_i^{w_i}$.
- Equivalent reformulation: select an alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot \ln(y_i)$.

40. Acknowledgment

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721,
- and by Grant 1 T36 GM078000-01 from the National Institutes of Health.

What Is... Cyberinfrastructure: . . . Part 1: Need for Data.. Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 42 of 49 Go Back Full Screen Close Quit

Pt. 2: Case of Probabilistic Prior Knowledge

- Description: from prior observations, we know $\tilde{s}_i \approx s_i$, and we know the st. dev. σ_i of this value.
- Minimize: $\sum_{i,i'} (\Delta s_{ij} \Delta s_{ij'})^2$ s.t. $\sum_{i=1}^c \ell_{ij} \cdot \Delta s_{ij} = \Delta t_i$ and

$$\frac{1}{n} \cdot \sum_{j=1}^{c} \frac{((s_{j}^{(k)} + \Delta s_{ij}) - \widetilde{s}_{j})^{2}}{\sigma_{j}^{2}} = 1.$$

- Solution (Lagrange multipliers): $\overline{\Delta s} \stackrel{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} \Delta s_{ij}$, $\frac{2}{n} \cdot \Delta s_{ij} - \frac{2}{n} \cdot \overline{\Delta s} + \lambda \cdot \ell_{ij} + \frac{2\mu}{n \cdot \sigma_{i}^{2}} \cdot (s_{j}^{(k)} + \Delta s_{ij} - \widetilde{s}_{j}) = 0.$
- Fact: Δs_{ij} is an explicit function of λ , μ , $\overline{\Delta s}$.
- Algorithm: solve 3 non-linear equations (above one + 2 constraints) with unknowns λ , μ , Δs .

Need for . . . What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best . . . Home Page Title Page Page 43 of 49

>>

Go Back

Full Screen

Close

Combination of Different Types of Prior Knowledge

- *Need:* we often have both:
 - prior measurement results i.e., probabilistic knowledge, and
 - expert estimates i.e., interval and fuzzy knowledge.
- Minimize: $\sum_{i,j'} (\Delta s_{ij} \Delta s_{ij'})^2$ s.t. $\sum_{i=1}^{c} \ell_{ij} \cdot \Delta s_{ij} = \Delta t_i$,

$$\frac{1}{n} \cdot \sum_{j=1}^{c} \frac{\left(\left(s_j^{(k)} + \Delta s_{ij} \right) - \widetilde{s}_j \right)^2}{\sigma_j^2} \le 1,$$

and
$$\underline{s}_j \leq s_j^{(k)} + \Delta s_{ij} \leq \overline{s}_j$$
.

• *Idea:* we minimize a convex function under convex constraints; efficient algorithms are known.

Need for . . . What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best . . . Home Page Title Page **>>**

Go Back

Page 44 of 49

Full Screen

Close

43. Combination of Different Types of Prior Knowledge: Algorithm

- *Idea* method of alternating projections:
 - first, add a correction that satisfy the first constraint,
 - then, the additional correction that satisfies the second constraint,
 - etc.
- Specifics:
 - first, add equal values Δs_{ij} to minimize Δt_i ;
 - restrict the values to the nearest points from $[\underline{s}_j, \overline{s}_j]$,
 - find the extra corrections that satisfy the probabilistic constraint,
 - repeat until converges.

What Is . . . Cyberinfrastructure: . . . Part 1: Need for Data . . Traditional Statistical . . . Case of Different . . . Part 2: Use of Expert. Determining Earth . . . Part 3: How to Best... Home Page Title Page **>>** Page 45 of 49 Go Back Full Screen Close Quit

Part 3, Proof: Part 1

• Due to scale-invariance, for every $y_1, \ldots, y_n, y'_1, \ldots,$ y'_n , we can take $\lambda_i = \frac{1}{y_i}$ and conclude that $(y_1',\ldots,y_n') \sim (y_1,\ldots,y_n) \Leftrightarrow \left(\frac{y_1'}{y_1},\ldots,\frac{y_n'}{y_n}\right) \sim (1,\ldots,1).$

• Thus, to describe the equivalence relation
$$\sim$$
, it is suf-

- ficient to describe $\{z = (z_1, ..., z_n) : z \sim (1, ..., 1)\}.$
- Similarly,

$$(y'_1, \dots, y'_n) \succ (y_1, \dots, y_n) \Leftrightarrow \left(\frac{y'_1}{y_1}, \dots, \frac{y'_n}{y_n}\right) \succ (1, \dots, 1).$$

- Thus, to describe the ordering relation \succ , it is sufficient to describe the set $\{z = (z_1, ..., z_n) : z \succ (1, ..., 1)\}.$
- Similarly, it is also sufficient to describe the set

$$\{z=(z_1,\ldots,z_n):(1,\ldots,1)\succ z\}.$$

Need for . . .

What Is . . .

Cyberinfrastructure: . . .

Part 1: Need for Data . . Traditional Statistical . . .

Case of Different . . .

Part 2: Use of Expert.

Determining Earth . . .

Part 3: How to Best... Home Page

Title Page

>>

Page 46 of 49

Go Back

Full Screen

Close

Proof: Part 2

45.

- To simplify: take logarithms $Y_i = \ln(y_i)$, and sets $S_{\sim} = \{Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \sim (1, \dots, 1)\},\$
 - $S_{\succ} = \{Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \succ (1, \dots, 1)\};$
 - $S_{\prec} = \{Z : (1, \dots, 1) \succ z = (\exp(Z_1), \dots, \exp(Z_n))\}.$
- Since the pre-ordering relation is total, for Z, either $Z \in S_{\sim}$ or $Z \in S_{\sim}$ or $Z \in S_{\sim}$.
- Lemma: S_{\sim} is closed under addition:

 - $Z \in S_{\sim}$ means $(\exp(Z_1), \ldots, \exp(Z_n)) \sim (1, \ldots, 1);$
 - due to scale-invariance, we have
 - $(\exp(Z_1+Z_1'),\ldots)=(\exp(Z_1)\cdot\exp(Z_1'),\ldots)\sim(\exp(Z_1'),\ldots);$

 - since \sim is transitive,

• also, $Z' \in S_{\sim}$ means $(\exp(Z'_1), \ldots) \sim (1, \ldots, 1)$;

 $(\exp(Z_1 + Z_1), \ldots) \sim (1, \ldots) \text{ so } Z + Z' \in S_{\sim}.$

Cyberinfrastructure: . . . Part 1: Need for Data . .

Traditional Statistical . . .

Need for . . . What Is . . .

Case of Different . . . Part 2: Use of Expert.

Determining Earth . . . Part 3: How to Best...

Title Page

Home Page

>>

Page 47 of 49

Go Back

Full Screen

Close

46. Proof: Part 3

- Reminder: the set S_{\sim} is closed under addition;
- Similarly, S_{\prec} and S_{\succ} are closed under addition.
- Conclusion: for every integer q > 0:
 - if $Z \in S_{\sim}$, then $q \cdot Z \in S_{\sim}$;
 - if $Z \in S_{\succ}$, then $q \cdot Z \in S_{\succ}$;
 - if $Z \in S_{\prec}$, then $q \cdot Z \in S_{\prec}$.
- Thus, if $Z \in S_{\sim}$ and $q \in N$, then $(1/q) \cdot Z \in S_{\sim}$.
- We can also prove that S_{\sim} is closed under $Z \to -Z$:
 - $Z = (Z_1, ...) \in S_{\sim} \text{ means } (\exp(Z_1), ...) \sim (1, ...);$
 - by scale invariance, $(1, ...) \sim (\exp(-Z_1), ...)$, i.e., $-Z \in S_{\sim}$.
- Similarly, $Z \in S_{\succ} \Leftrightarrow -Z \in S_{\prec}$.
- So $Z \in S_{\sim} \Rightarrow (p/q) \cdot Z \in S_{\sim}$; in the limit, $x \cdot Z \in S_{\sim}$.

Need for . . .

What Is...

Cyberinfrastructure: . . .

Part 1: Need for Data . .

Traditional Statistical...

Case of Different . . .

Part 2: Use of Expert . . .

Determining Earth...

Part 3: How to Best...

Home Page
Title Page

44 >>

→

Page 48 of 49

Go Back

Full Screen

Tun Screen

Close

47. Proof: Final Part

- Reminder: S_{\sim} is closed under addition and multiplication by a scalar, so it is a linear space.
- Fact: S_{\sim} cannot have full dimension n, since then all alternatives will be equivalent to each other.
- Fact: S_{\sim} cannot have dimension < n-1, since then:
 - we can select an arbitrary $Z \in S_{\prec}$;
 - connect it $w/-Z \in S_{\succ}$ by a path γ that avoids S_{\sim} ;
 - due to closeness, $\exists \gamma(t^*)$ in the limit of S_{\succ} and S_{\prec} ;
 - thus, $\gamma(t^*) \in S_{\sim}$ a contradiction.
- Every (n-1)-dim lin. space has the form $\sum_{i=1}^{n} \alpha_i \cdot Y_i = 0$.
- Thus, $Y \in S_{\succ} \Leftrightarrow \sum \alpha_i \cdot Y_i > 0$, and $y \succ y' \Leftrightarrow \sum \alpha_i \cdot \ln(y_i/y_i') > 0 \Leftrightarrow \prod y_i^{\alpha_i} > \prod y_i'^{\alpha_i}.$

Need for . . .

What Is . . .

Cyberinfrastructure: . . .

Part 1: Need for Data . .

Traditional Statistical . . .

Case of Different . . .

Part 2: Use of Expert . . .

Part 2: Use of Expert...

Determining Earth...

Part 3: How to Best..

Home Page

Title Page

Page 49 of 49

Go Back

Full Screen

Close