Normalization-Invariant Fuzzy Logic Operations Explain Empirical Success of Student Distributions in Describing Measurement Uncertainty

Hamza Alkhatib¹, Boris Kargoll¹, Ingo Neumann¹, and Vladik Kreinovich²

¹Geodätisches Institut, Leibniz Universität Hannover Nienburger Strasse 1, 30167 Hannover, Germany alkhatib@gih.uni-hannover.de, kargoll@gih.uni-hannover.de neumann@gih.uni-hannover.de ²Department of Computer Science, University of Texas at El Paso El Paso, TX 79968, USA, vladik@utep.edu

1. Traditional Engineering Approach to Measurement Uncertainty

- Traditionally, in engineering applications, it is assumed that the measurement error is normally distributed.
- This assumption makes perfect sense from the practical viewpoint.
- For the majority of measuring instruments, the measurement error is indeed normally distributed.
- It also makes sense from the theoretical viewpoint:
 - the measurement error often comes from a joint effect of many independent small components,
 - so, according to the Central Limit Theorem, the resulting distribution is indeed close to Gaussian.

2. Traditional Engineering Approach (cont-d)

- Another explanation: we only have partial information about the distribution.
- Often, we only know the first and the second moments.
- The first moment mean represents a bias.
- If we know the bias, we can always subtract it from the measurement result.
- Thus re-calibrated measuring instrument will have 0 mean.
- Thus, we can always safely assume that the mean is 0.
- Then, the 2nd moment is simply the variance $V = \sigma^2$.

3. Traditional Engineering Approach (cont-d)

- There are many distributions w/0 mean and given σ .
- For example, we can have a distribution in which we have σ and $-\sigma$ with probability 1/2 each.
- However, such a distribution creates a false certainty that no other values of x are possible.
- Out of all such distributions, it makes sense to select the one which maximally preserves the uncertainty.
- Uncertainty can be gauged by average number of binary questions needed to determine x with accuracy ε .
- It is described by entropy $S = -\int \rho(x) \cdot \log_2(\rho(x)) dx$.
- Out of all distributions $\rho(x)$ with mean 0 and given σ , the entropy is the largest for normal $\rho(x)$.

4. Need for Heavy-Tailed Distributions

• For the normal distribution,

$$\rho(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left(-\frac{x^2}{2\sigma^2}\right).$$

- The "tails" values corresponding to large |x| are very light, practically negligible.
- Often, $\rho(x)$ decreases much slower, as $\rho(x) \sim c \cdot x^{-\alpha}$.
- We cannot have $\rho(x) = c \cdot x^{-\alpha}$, since $\int_0^\infty x^{-\alpha} dx = +\infty$, and we want $\int \rho(x) dx = 1$.
- Often, the measurement error is well-represented by a Student distribution $\rho_S(x) = (a + b \cdot x^2)^{-\nu}$.
- Our experience is from geodesy, but the Student distributions is effective in other applications as well.
- This distribution is even recommended by the International Organization for Standardization (ISO).

Traditional . . . Need for Heavy-Tailed . . What We Do Need for Normalization How to Combine Degrees Deriving Student . . . Acknowledgments Home Page Title Page Page 5 of 13 Go Back Full Screen Close

5. What We Do

- How to explain the empirical success of Student's distribution $\rho_S(x)$?
- We show that a fuzzy formalization of commonsense requirements leads to $\rho_S(x)$.
- Our idea: uncertainty means that the first value is possible, and the second value is possible, etc.
- Let's select $\rho(x)$ with the largest degree to which all the values are possible.
- It is reasonable to use fuzzy logic to describe degrees of possibility.
- An expert marks his/her degree by selecting a number from the interval [0, 1].

6. Need for Normalization

- For "small", we are absolutely sure that 0 is small: $\mu_{\text{small}}(0) = 1$ and $\max_{x} \mu_{\text{small}}(x) = 1$.
- For "medium", there is no x with $\mu_{\text{med}}(x) = 1$, so $\max_{x} \mu_{\text{med}}(x) < 1$.
- A usual way to deal with such situations is to normalize $\mu(x)$ into $\mu'(x) = \frac{\mu(x)}{\max_{y} \mu(y)}$.
- Normalization is also needed performed when we get additional information.
- Example: we knew that x is small, we learn that $x \geq 5$.
- Then, $\mu_{\text{new}}(x) = \mu_{\text{small}}(x)$ for $x \geq 5$ and $\mu_{\text{new}}(x) = 0$ for x < 5, and $\max_{x} \mu_{\text{new}}(x) < 1$.

7. Need for Normalization (cont-d)

- Normalization is also needed when experts use probabilities to come up with the degrees.
- Indeed, the larger $\rho(x)$, the more probable it is to observe a value close to x.
- Thus, it is reasonable to take the degrees $\mu(x)$ proportional to $\rho(x)$: $\mu(x) = c \cdot \rho(x)$.
- Normalization leads to $\mu(x) = \frac{\rho(x)}{\max_{y} \rho(y)}$.
- Vice versa, if we have the result $\mu(x)$ of normalizing a pdf, we can reconstruct $\rho(x)$ as $\rho(x) = \frac{\mu(x)}{\int \mu(y) \, dy}$.

8. How to Combine Degrees

- \bullet For each x, we thus get a degree to which x is possible.
- We want to compute the degree to which x_1 is possible and x_2 is possible, etc.
- So, we need to apply an "and"-operation (t-norm) to the corresponding degrees.
- Natural idea: use normalization-invariant t-norms.
- We can compute the normalized degree of confidence in a statement A & B in two different ways:
 - we can normalize $f_{\&}(a,b)$ to $\lambda \cdot f_{\&}(a,b)$;
 - or, we can first normalize a and b and then apply an "and"-operation: $f_{\&}(\lambda \cdot a, \lambda \cdot b)$.
- It's reasonable to require that we get the same estimate: $f_{\&}(\lambda \cdot a, \lambda \cdot b) = \lambda \cdot f_{\&}(a, b)$.

9. How to Combine Degrees (cont-d)

- It is known that Archimedean t-norms $f_{\&}(a,b) = f^{-1}(f(a) + f(b))$ are universal approximators.
- So, we can safely assume that $f_{\&}$ is Archimedean:

$$c = f_{\&}(a, b) \Leftrightarrow f(c) = f(a) + f(b).$$

- Thus, invariance means that f(c) = f(a) + f(b) implies $f(\lambda \cdot c) = f(\lambda \cdot a) + f(\lambda \cdot b)$.
- So, for every λ , the transformation $T: f(a) \to f(\lambda \cdot a)$ is additive: T(A+B) = T(A) + T(B).
- Known: every monotonic additive function is linear.
- Thus, $f(\lambda \cdot a) = c(\lambda) \cdot f(a)$ for all a and λ .
- For monotonic f(a), this implies $f(a) = C \cdot a^{-\alpha}$.
- So, f(c) = f(a) + f(b) implies $C \cdot c^{-\alpha} = C \cdot a^{-\alpha} + C \cdot b^{-\alpha}$, and $c = f_{\&}(a, b) = (a^{-\alpha} + b^{-\alpha})^{-1/\alpha}$.

Traditional . . .

Need for Heavy-Tailed . .

What We Do

Need for Normalization

How to Combine Degrees

Deriving Student . . .

Acknowledgments

Home Page

Title Page

Page 10 of 13

Go Back

Full Screen

Close

10. Deriving Student Distribution

• We want to maximize the degree

$$f_{\&}(\mu(x_1), \mu(x_2), \ldots) = ((\mu(x_1))^{-\alpha} + (\mu(x_2))^{-\alpha} + \ldots)^{-1/\alpha}.$$

- The function f(a) is decreasing.
- So, maximizing $f_{\&}(\mu(x_1),...)$ is equivalent to minimizing the sum $(\mu(x_1))^{-\alpha} + (\mu(x_2))^{-\alpha} + ...$
- In the limit, this sum tends to $I \stackrel{\text{def}}{=} \int (\mu(x))^{-\alpha} dx$.
- So, we minimize I under constrains $\int x \cdot \rho(x) dx = 0$ and $\int x^2 \cdot \rho(x) dx = \sigma^2$, where $\rho(x) = \frac{\mu(x)}{\int \mu(y) dy}$.
- Thus, we minimize $\int (\mu(x))^{-\alpha} dx$ under constraints $\int x \cdot \mu(x) dx = 0 \text{ and } \int x^2 \cdot \mu(x) dx \sigma^2 \cdot \int \mu(x) dx = 0.$

Traditional . . .

Need for Heavy-Tailed . .

What We Do

Need for Normalization

How to Combine Degrees

Deriving Student . . .

Acknowledgments

Home Page

Title Page

>>

Page 11 of 13

Go Back

Full Screen

Close

11. Deriving Student Distribution (cont-d)

• Lagrange multiplier method leads to minimizing

$$\int (\mu(x))^{-\alpha} dx + \lambda_1 \cdot \int x \cdot \mu(x) dx + \lambda_2 \cdot \left(\int x^2 \cdot \mu(x) dx - \sigma^2 \cdot \int \mu(x) dx \right) \to \min.$$

• Equating the derivative w.r.t. $\mu(x)$ to 0, we get:

$$-\alpha \cdot (\mu(x))^{-\alpha-1} + \lambda_1 \cdot x + \lambda_2 \cdot x^2 - \lambda_2 \cdot \sigma^2 = 0.$$

- Thus, $\mu(x) = (a_0 + a_1 \cdot x + a_2 \cdot x^2)^{-\nu}$.
- For $\rho(x) = c \cdot \mu(x)$, we get $\rho(x) = c \cdot (a_0 + a_1 \cdot x + a_2 \cdot x^2)^{-\nu}$.
- So, $\rho(x) = c \cdot (a_2 \cdot (x x_0)^2 + c_1)^{-\nu}$.
- This $\rho(x)$ is symmetric w.r.t. x_0 , so, the mean is x_0 .
- We know that the mean is 0, so $x_0 = 0$, and $\rho(x) = \text{const} \cdot (1 + a_2 \cdot x_2)^{-\nu}$: exactly Student's $\rho_S(x)$!

Traditional . . .

Need for Heavy-Tailed . .

What We Do

Need for Normalization

How to Combine Degrees

Deriving Student . . .

Acknowledgments

Home Page

Title Page

Page 12 of 13

Go Back

Full Screen

Close

12. Acknowledgments

- This work was performed when Vladik was a visiting researcher with the Geodetic Institute.
- This visit to the Leibniz University of Hannover was supported by the German Science Foundation.
- This work was also supported in part by NSF grant HRD-1242122.

