Centroids Beyond Defuzzification

Juan Carlos Figueroa-García¹, Christian Servin², and Vladik Kreinovich³

¹Universidad Distrital Francisco José de Caldas Bogotá, Colombia, jcfigueroag@udistrital.edu.co
²Computer Science and Information Technology Systems Department
El Paso Community College (EPCC), 919 Hunter Dr. El Paso, TX 79915-1908, USA cservin1@epcc.edu
³University of Texas at El Paso 500 W. University, El Paso, TX 79968, USA vladik@utep.edu

Centroid Geometric Meaning of . . Mathematical Formula. First Meaning of This. Proof A Version of the First Second Meaning Home Page **>>** Page 1 of 14 Go Back Full Screen Close Quit

1. Centroid Defuzzification: A Brief Reminder

- In fuzzy control, we start with the expert rules.
- These rules are formulated in terms in imprecise ("fuzzy") words from natural language.
- Given the inputs, we recommend what control value *u* to use.
- This recommendation is also fuzzy:
 - for each possible value u,
 - we provides a degree $\mu(u) \in [0,1]$ to which u is a reasonable control.
- Such a fuzzy outcome is perfect if the main objective of the system is to advise a human controller.
- In many practical situations, however, we want this system to actually control.

2. Centroid Defuzzification (cont-d)

- In such situations, it is important to transform:
 - the fuzzy recommendation as expressed by the function $\mu(u)$ (known as the membership function)
 - into a precise control value \overline{u} that this system will apply.
- Such a transformation is known as defuzzification.
- The most widely used defuzzification procedure is centroid defuzzification $\overline{u} = \frac{\int u \cdot \mu(u) du}{\int \mu(u) du}$.

3. Geometric Meaning of Centroid Defuzzification

- The name for this defuzzification procedure comes from the fact that:
 - if we take the subgraph of the function $\mu(u)$, i.e., the 2-D set $S \stackrel{\text{def}}{=} \{(u,y) : 0 \leq y \leq \mu(u)\},$
 - then the value \overline{u} is actually the *u*-coordinate of this set's center of mass ("centroid") $(\overline{u}, \overline{y})$.
- In fuzzy technique, we only use the *u*-coordinate of the center of mass.
- A natural question is: is there a fuzzy-related meaning of the y-coordinate \overline{y} ?
- In this talk, we describe such a meaning.

4. Mathematical Formula for the y-Component

- In general, the y-component of the center of mass of a 2-D body S has the form $\overline{y} = \frac{\int_S y \, du \, dy}{\int_S du \, dy}$.
- The denominator is the same as for the *u*-component: it is equal to $\int \mu(u) du$.
- The numerator can also be easily computed as

$$\int_{S} y \, du \, dy = \int_{u} du \cdot \int_{0}^{\mu(u)} y \, dy = \frac{1}{2} \cdot \int_{u} \mu^{2}(u) \, du.$$

• Thus, we have $\overline{y} = \frac{1}{2} \cdot \frac{\int \mu^2(u) \, du}{\int \mu(u) \, du}$.

Quit

5. First Meaning of This Formula

- The *u*-component of the centroid is the weighted average value of u, with weights proportional to $\mu(u)$.
- Similarly, the expression \overline{y} is the weighted average value of $\mu(u)$.
- Each value $\mu(u)$ is the degree of fuzziness of the system's recommendation about the control value u.
- Thus, the value \overline{y} can be viewed with the weighted average value of the degree of fuzziness.
- Let us show that this interpretation makes some sense.

• Proposition.

- The value \overline{y} is always between 0 and 1/2.
- For a measurable function $\mu(u)$, $\overline{y} = 1/2$ if and only if $\mu(u)$ is almost everywhere 0 or 1.

6. First Meaning of This Formula (cont-d)

- In other words, if we ignore sets of measure 0:
 - the value \overline{y} is equal to 1/2 if and only if
 - the corresponding fuzzy set is actually crisp.
- For all non-crisp fuzzy sets, we have $\overline{y} < 1/2$.
- For a triangular membership function, one can check that we always have $\overline{y} = 1/3$.
- For trapezoid membership functions, \overline{y} can take any possible value between 1/3 and 1/2.
- The larger the value-1 part, the larger \overline{y} .

7. Proof

- Since $\mu(u) \in [0, 1]$, we always have $\mu^2(u) \le \mu(u)$, thus $\int \mu^2(u) du \le \int \mu(u) du$, hence $\frac{\int \mu^2(u) du}{\int \mu(u) du} \le 1$.
- So, $\overline{y} \leq 1/2$.
- Vice versa, if $\overline{y} = 1/2$, then $\frac{\int \mu^2(u) du}{\int \mu(u) du} = 1$.
- Multiplying both sides of this equality by the denominator, we conclude that $\int \mu^2(u) du = \int \mu(u) du$, i.e.:

$$\int \left(\mu(u) - \mu^2(u)\right) du = 0.$$

- The difference $\mu(u) \mu^2(u)$ is always non-negative.
- Since its integral is 0, this means that almost always $\mu(u) \mu^2(u)$, i.e., $\mu(u) = 0$ or $\mu(u) = 1$.
- The proposition is proven.

8. A Version of the First Meaning

- In general, in the fuzzy case, we have different values of $\mu(u)$ for different u.
- We want to find a single degree μ_0 which best represents all these values.
- This is natural to interpret as requiring that:
 - the mean square difference weighted by $\mu(u)$ i.e., the value $\int (\mu(u) - \mu_0)^2 \cdot \mu(u) du$
 - attains its smallest possible value.
- Differentiating the minimized expression with respect to μ_0 and equating the derivative to 0, we get:

$$\int 2(\mu_0 - \mu(u)) \cdot \mu(u) \, du = 0.$$

• Hence $\mu_0 = \frac{\int \mu^2(u) \, du}{\int \mu(u) \, du}$, and $y_0 = (1/2) \cdot \mu_0$.

9. Second Meaning

- Membership functions $\mu(u)$ and probability density functions $\rho(u)$ differ by their normalization:
 - for a membership function $\mu(u)$, we require that $\max_{u} \mu(u) = 1$, while
 - for a probability density function $\rho(u)$, we require that $\int \rho(u) du = 1$.
- For every $f(u) \ge 0$, we can divide it by an appropriate constant c and get $\mu(u)$ or $\rho(u)$:
 - if we divide f(u) by $c = \max_{v} f(v)$, then we get a membership function $\mu(u) = \frac{f(u)}{\max_{v} f(v)}$;
 - if we divide f(u) by $c = \int \mu(v) dv$, we get a probability density function $\rho(u) = \frac{f(u)}{\int f(v) dv}$.

10. Second Meaning (cont-d)

• In particular, for each $\mu(u)$, we can construct the corresponding probability density function

$$\rho(u) = \frac{\mu(u)}{\int \mu(v) \, dv}.$$

- In terms of this expression $\rho(u)$, the formulas for both components of the center of mass are simplified.
- The result \overline{u} of centroid defuzzification takes the form

$$\overline{u} = \int u \cdot \rho(u) \, du.$$

- It is simply the expected value of control under this probability distribution.
- Similarly, the value $\mu_0 = 2\overline{y}$ takes the form

$$\mu_0 = \int \mu(u) \cdot \rho(u) \, du.$$

11. Second Meaning (cont-d)

- So, μ_0 is simply the expected value of the membership function.
- Note: $\int \mu(u) \cdot \rho(u) du$ is Zadeh's formula for the probability of the fuzzy event.
- Reminder: $\mu(u)$ characterizes to what extent a control value u is reasonable.
- So, μ_0 is the probability that a control value selected by fuzzy control will be reasonable.

12. Second Meaning (cont-d)

- This interpretation is in good accordance with the above Proposition.
- If we are absolutely confident in our recommendations, i.e., if $\mu(u)$ is a crisp set, then:
 - the probability μ_0 is equal to 1,
 - thus, $\overline{y} = (1/2) \cdot \mu_0$ is equal to 1/2.
- On the other hand, if we are not confident in our recommendations, then:
 - the probability μ_0 is smaller than 1 and
 - thus, its half \overline{y} is smaller than 1/2.

13. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).

The authors are thankful to all the participants of IFSA/NAFIPS'2019 for valuable discussions.

