Is There a Contradiction Between Statistics and Fairness: From Intelligent Control to Explainable AI

Christian Servin¹ and Vladik Kreinovich²

¹Computer Science and Information Technology
Systems Department
El Paso Community College (EPCC), 919 Hunter Dr.
El Paso, TX 79915-1908, USA
cservin1@epcc.edu

²University of Texas at El Paso
500 W. University, El Paso, TX 79968, USA
vladik@utep.edu

Social Applications of AI Many Current Social . . . So Is There a ... Examples of Unfair . . . A Simplified Statistical . . A Simplified Fuzzy . . . General Description of . . Application to Our... Partial Confidence... Home Page **>>** Page 1 of 39 Go Back Full Screen Close Quit

- Recent AI techniques like deep learning have led to many successful applications.
- For example, we can apply deep learning to decide:
 - whose loan applications should be approved and whose applications should be rejected,
 - and if approved, what interest should we charge.
- We can apply deep learning to decide:
 - which candidates for graduate program to accept,
 - and for those accepted what financial benefits to offer as an enticement.
- In all such cases, we feed the system with numerous past examples of successes and failures.

2. Social Applications of AI (cont-d)

- Based on these example, the systems predict whether a given loan will be a success.
- Statistically, these systems work well: they predict success or failure better than human decision makers.
- However, the results are often not satisfactory. Let us explain why.

3. Many Current Social Applications of AI Are Unsatisfactory

- On average, loan applications from poorer geographic areas have a higher default rate.
- This is a known fact, and statistical methods underlying machine learning find this out.
- As a result, the system naturally recommends rejection of all loans from these areas.
- This is not fair to people with good credit record who happen to live in the not-so-good areas.
- Moveover, it is also detrimental to the bank.
- Indeed, the bank will miss on profiting from such potentially successful loans.
- Similarly, in many disciplines women has a lower success rates in getting their PhDs than men.

4. Many Current Social Applications of AI Are Unsatisfactory (cont-d)

- Women also, on average, take longer to succeed.
- One of the main reasons for this is that raising children requires much more efforts from women than from men.
- A statistical system, crudely speaking, does not care about the reasons.
- This system just takes this statistical fact into account and preferably selects males.
- Not only this is not fair, this way the universities miss a lot of talent.
- And nowadays, with not much need for routine boring work, talent and creativity are extremely important.
- \bullet Talent and creativity should be nurtured, not rejected.

5. So Is There a Contradiction Between Statistics And Fairness?

- It seems that if we want the systems to be fair:
 - we cannot rely on statistics only,
 - we need to supplement statistics with additional fairness constraints.
- The need for such constraints is usually formulated as the need for *explainable AI*.
- The main idea behind explainable AI is that:
 - instead of relying on a machine learning system as a black box,
 - we extract some rules from this system,
 - and if these rules are not fair, we replace them with fairer rules.

6. What We Show in This Talk

- We show that the seeming inconsistency comes from the fact that we use simplified statistical models.
- We show that:
 - a more detailed description of the corresponding uncertainty – probabilistic or fuzzy,
 - eliminates this seeming contradiction, and
 - enables the system to come up with fair decisions without any need for additional constraints.

7. Examples of Unfair Decisions

- We want to understand why the existing techniques can lead to unfair solutions.
- So let us trace some detailed simplified examples.
- We will start with statistical examples.
- Then, we will show that:
 - mathematically similar examples this time not related to fairness,
 - can be found in applications of fuzzy techniques as well,
 - namely, when we apply the usual intelligent control techniques.

- Let us consider a statistical version of a classical AI example:
 - birds normally fly,
 - penguins are birds,
 - penguins normally do not fly, and
 - Sam is a penguin.
- The question is: does Sam fly?
- To make it into a statistical example, let us add some probabilities.
- Let us assume:
 - that 90% of the birds fly, and
 - that 99% of the penguins do not fly.

Social Applications of Al

Many Current Social...

So Is There a...

Examples of Unfair...

A Simplified Statistical . .

A Simplified Fuzzy...

General Description of...

Application to Our...

Partial Confidence..

Home Page

Title Page

44 >>

←

Page 9 of 39

6.5

Go Back

Full Screen

Close

- Of course, in reality, 100% of the penguins do not fly.
- However, let us keep it under 100% since in most reallife situations, we are never 100% sure about anything.
- From the viewpoint of common sense, the information about birds flying in general is rather irrelevant.
- Indeed, we know that Sam is not just any bird, it is a penguin.
- Penguins are very specific type of bird for which we know the probability of flying.
- So, to find the probability of Sam flying, we should only take into account information about penguins.
- Thus, we should conclude that the probability of Sam flying is 100 99 = 1%.

- However, this is not what we would get if we use the standard statistical techniques.
- Indeed, from the purely statistical viewpoint, here we have two rules that lead us to two different conclusions:
 - since Sam is a bird, we can make a conclusion A that Sam flies, with probability a = 90%; and
 - since Sam is a penguin, we can make a conclusion B that Sam does not fly, with probability b = 99%.
- These two conclusions cannot be both right.
- Indeed, the probabilities of Sam flying and not flying should add up to 1, and here we have

$$0.9 + 0.99 = 1.89 > 1.$$

• This means that these conclusions are inconsistent.

- From the purely logical viewpoint, if we have two statements A and B, we can have four possible situations:
 - both A and B are true, i.e., A & B;
 - -A is true but B is false, i.e., $A \& \neg B$;
 - -A is false but B is true, i.e., $\neg A \& B$; and
 - both A and B are false, i.e., $\neg A \& \neg B$.
- The probabilities P(.) of all four situations can be obtained by using the Maximum Entropy Principle.
- This is a natural extension of the Laplace Indeterminacy Principle.
- According to Maximum Entropy Principle,
 - if we do not know the dependence between two random variables,
 - then we should assume that they are independent.

Many Current Social . . . So Is There a . . . Examples of Unfair . . . A Simplified Statistical . . A Simplified Fuzzy . . . General Description of . . Application to Our... Partial Confidence... Home Page Title Page **>>** Page 12 of 39 Go Back Full Screen Close Quit

Social Applications of AI

• For independent events, probabilities multiply, so $P(A \& B) = P(A) \cdot P(B) = a \cdot b, P(A \& \neg B) = a \cdot (1-b),$

$$P(A \& B) = P(A) \cdot P(B) = a \cdot b, P(A \& \neg B) = a \cdot (1-b),$$

$$P(\neg A \& B) = (1-a) \cdot b, P(\neg A \& \neg B) = (1-a) \cdot (1-b).$$

- In our case, the statements A and B are inconsistent, so we cannot have A & B and we cannot have $\neg A \& \neg B$.
- The only two consistent options are $A \& \neg B$ and $\neg A \& B$.
- Thus, the true probabilities P(A) and P(B) can be found if we restrict ourselves to consistent situations:

$$P(A) = P(A \mid \text{consistent}) = \frac{P(A \& \text{consistent})}{P(\text{consistent})} =$$

$$\frac{P(A \& \neg B)}{P(A \& \neg B) + P(\neg A \& B)} = \frac{a \cdot (1 - b)}{a \cdot (1 - b) + (1 - a) \cdot b}.$$

• In our example, with a = 0.9 and b = 0.99, we get

$$P(A) = \frac{0.9 \cdot 0.01}{0.9 \cdot 0.01 + 0.1 \cdot 0.99} = \frac{0.009}{0.009 + 0.099} = \frac{1}{12} \approx 8\%.$$

Social Applications of AI Many Current Social . . .

So Is There a . . .

Examples of Unfair . . .

A Simplified Statistical . .

A Simplified Fuzzy . . . General Description of.

Application to Our...

Partial Confidence... Home Page

Title Page

>>

Page 13 of 39

Go Back

Full Screen

Close

- So, instead the desired 1%, we get a much larger 8% probability.
- This value is clearly affected by the general rule that birds normally fly.
- This is a simplified example.
- However, it explains why recommendation systems based on usual statistical rules becomes biased:
 - if a person with a perfect credit history happens to live in a poor neighborhood,
 - this person's chances of getting a loan will be decreased.

- Similarly:
 - if a female student with perfect credentials applies for a graduate program,
 - the system would be treating her less favorably,
 - since in general, in computer science, female students succeed with lower frequency.
- In both cases, we have clearly unfair situations:
 - the system designers may honestly give female students a better chance to succeed, but
 - instead, their inference system perpetrates the inequality.

15. A Simplified Fuzzy Example

- A fuzzy-related reader may view the above example as one more example of:
 - why statistical methods are not always applicable,
 - and why alternative methods such as fuzzy methods are needed.
- Alas, we will show that a very similar example is possible if we use the usual fuzzy techniques.
- This problem may not be well known for fuzzy recommendation systems since there few of them.
- However, it is exactly the same problem that is well known in fuzzy control.
- And fuzzy control is a traditional application area of fuzzy techniques.

- Indeed, suppose that we have two rules that describe how the control u should depend on the input x:
 - if x is small, then u is small; and
 - if x = 0.2, then u = 0.3.
- Suppose also that the notion "small" is described by a triangular membership function

$$\mu_{\text{small}}(x) = \max(1 - |x|, 0).$$

- From the common sense viewpoint, the first rule is more general.
- The second rule describes a specific knowledge that we have about control corresponding to x = 0.2.
- The second rule is actually in full agreement with the first one.

Many Current Social . . . So Is There a ... Examples of Unfair . . . A Simplified Statistical . . A Simplified Fuzzy . . . General Description of . . Application to Our... Partial Confidence... Home Page Title Page **>>** Page 17 of 39 Go Back Full Screen Close Quit

Social Applications of AI

- Such situations can happen, e.g., when we combine:
 - the general expert knowledge (the first rule) with
 - the results of specific calculations (second rule).
- In this case, for x = 0.2, we know the exact control value u = 0.3.
- So, we should return this control value.
- Suppose that we have fuzzy rules "if $A_i(x)$ then $B_i(u)$ ", i = 1, ..., n.
- This means that a control u is reasonable for given value x if:
 - either the first rule is applicable, i.e., $A_1(x)$ is true and $B_1(u)$ is true,
 - or the second rule is applicable, i.e., $A_2(x)$ is true and $B_2(u)$ is true, etc.

Social Applications of AI Many Current Social . . . So Is There a . . . Examples of Unfair . . . A Simplified Statistical . . A Simplified Fuzzy . . . General Description of. Application to Our... Partial Confidence... Home Page Title Page **>>** Page 18 of 39 Go Back Full Screen

Close

- Let us denote this property "u is reasonable for x" by R(x,u).
- In usual notations & for "and" and \vee for "or", the above text will become the following formula:

$$R(x, u) \leftrightarrow (A_1(x) \& B_1(u)) \lor (A_2(x) \& B_2(u)) \lor \dots$$

- In line with the general fuzzy methodology:
 - for situations in which we are not 100% sure about the properties A_i and B_i ,
 - we can apply the corresponding fuzzy versions $f_{\&}(a,b)$ and $f_{\vee}(a,b)$ of usual "and" and "or".
- Then, for the degree $\mu_r(x,u)$ to which u is reasonable for x, we get the following formula:

$$\mu_r(x,u) = f_{\vee}(f_{\&}(\mu_{A_1}(x),\mu_{B_1}(u)), f_{\&}(\mu_{A_2}(x),\mu_{B_2}(u)),\ldots).$$

Social Applications of AI Many Current Social . . .

So Is There a . . .

Examples of Unfair . . .

A Simplified Statistical . .

A Simplified Fuzzy . . . General Description of.

Application to Our...

Partial Confidence... Home Page

Title Page

Page 19 of 39

Go Back

Full Screen

Close

• In particular, for the simplest possible "and"- and "or"- operations $f_{\&}(a,b) = \min(a,b)$ and $f_{\lor}(a,b) = \max(a,b)$:

$$\mu_r(x, u) = \max(\min(\mu_{A_1}(x), \mu_{B_1}(u)), \min(\mu_{A_2}(x), \mu_{B_2}(u)), \ldots).$$

- Once we have this degree for each u, we can find the control \overline{u} corresponding to x by requiring that:
 - its mean square deviation from the actual value u
 - weighted by this degree,
 - is the smallest possible.
- In precise terms, for a given x, we minimize the expression $\int \mu_r(x,u) \cdot (u-\overline{u})^2$.
- Differentiating this expression with respect to \overline{u} and equating the derivative to 0, we get the formula

$$\overline{u} = \frac{\int \mu_r(x, u) \cdot u \, du}{\int \mu_r(x, u) \, du}.$$

Social Applications of AI Many Current Social . . . So Is There a ... Examples of Unfair . . . A Simplified Statistical . . A Simplified Fuzzy . . . General Description of . . Application to Our... Partial Confidence... Home Page Title Page **>>** Page 20 of 39 Go Back Full Screen Close

- This formula is known as *centroid defuzzification*.
- Let us apply this technique to our two rules, for the case when x = 0.2 and thus, $\mu_{\text{small}}(x) = 0.8$.
- In the second rule, both the condition and the conclusion are crisp:
 - we have $\mu_{A_2}(0.2) = 1$ and $\mu_{A_2}(x) = 0$ for all other values x, and
 - we have $\mu_{B_2}(0.3) = 1$ and $\mu_{B_2}(u) = 0$ for all other values u.
- Thus, for all $u \neq 0.2$, we have $\mu_r(x, u) = \min(\mu_{\text{small}}(u), 0.8)$ and for u = 0.2, we have $\mu_r(x, u) = 1$.
- According to the centroid formula, the resulting control is the above ratio of two integrals.

Social Applications of AI Many Current Social . . .

So Is There a . . .

Examples of Unfair . . . A Simplified Statistical . .

A Simplified Fuzzy . . .

General Description of ...

Application to Our...

Home Page

Partial Confidence...

Title Page

Page 21 of 39

Go Back

Full Screen

Close

A Simplified Fuzzy Example (cont-d)

- The single-point change in the function $\mu_r(x,u)$ does not affect its integral.
- So the numerator is simply equal to the integral of the product

 $\min(\mu_{\text{small}}(u), 0.8) \cdot u = \min(\max(1 - |u|), 0), 0.8) \cdot u.$

- This product is an odd function of u:
 - the first factor does not change if we replace u with -u, and
 - the second factor changes sign.
- Thus, its integral is 0.
- So, the usual fuzzy methodology leads to u=0.
- However, from the viewpoint of common sense, we should get u = 0.3.

Social Applications of AI Many Current Social . . .

So Is There a . . .

Examples of Unfair . . .

A Simplified Statistical . . A Simplified Fuzzy . . .

General Description of . .

Partial Confidence...

Application to Our...

Home Page Title Page

Go Back

Full Screen

Close

- In all previous example, we considered the case of situations when we have two rules.
- For example, in the case of loans:
 - the first rule is that loans recipients from poor areas often default on a loan, and
 - the second rule is that people with a good credit record usually pay back their loans.
- From the common sense viewpoint:
 - for a person with a good credit record living in a poor area,
 - we should go with the second rule.
- However, the naive statistical approach pays an unnecessarily high attention to the first rule as well.

23. General Description of the Problem (cont-d)

- And this approach underlies in current machine learning systems.
- Similarly, for Sam the penguin:
 - we have a general rule applicable to all the birds that they usually fly; and
 - we have a second specific rule, applicable only to penguins that they do not fly.
- From the common sense viewpoint, since Sam in a penguin, we should go with the second rule.
- However, the naive statistical approach gives too much weight to the first rule.

24. How Can We Distinguish Between a More General And a More Specific Rule?

- One important difference is that a more specific case describes a sub-sample.
- In this sub-sample, all the objects are, in some reasonable sense, similar.
- Thus, they differ from each other less than in the general sample.
- So, for many quantities, the standard deviation σ is much larger in the larger sample.
- This is simple and reasonable, and as we show:
 - it helps put more weight on a more general rule and,
 - thus, it helps avoid the contradiction between statistics and fairness.

Many Current Social . . . So Is There a ... Examples of Unfair... A Simplified Statistical . . A Simplified Fuzzy . . . General Description of . . Application to Our... Partial Confidence... Home Page Title Page **>>** Page 25 of 39 Go Back Full Screen Close Quit

Social Applications of AI

25. How to Combine Statistical Rules With Different Means And Standard Deviations

- To illustrate our point, let us consider the simplest situation when we have two statistical rules.
- Let's assume that these rules come from two independent sets of arguments or observation.
- Both rules predict the value of a quantity x, and we are absolutely confident in both of these rules.
- Since these are statistical rules:
 - they do not predict the exact value of the quantity,
 - they only predict the probabilities of different possible values of this quantity.
- These probabilities can be described by the corresponding probability density functions $\rho_1(x)$ and $\rho_2(x)$.

- If these were rules predicting two different quantities x_1 and x_2 , then:
 - due to the fact that these rules are assumed to be independent,
 - the probability to have values x_1 and x_2 should be equal to the product $\rho_1(x_1) \cdot \rho_2(x_2)$.
- However, in our case, we know that these distributions describe the exact same quantity, i.e., that $x_1 = x_2$; so:
 - instead of the above 2-D probability density,
 - we need to consider the *conditional* probability density, under the condition that $x_1 = x_2$.
- It is known that for $A \subseteq B$, $P(A \mid B) = \frac{P(A)}{P(B)}$.
- So, $P(A \mid B) = c \cdot P(A)$ for some constant c.

Social Applications of Al

Many Current Social...

So Is There a...

Examples of Unfair...

A Simplified Statistical . .

A Simplified Fuzzy...

General Description of...

Application to Our...

Partial Confidence . . .

Home Page

Title Page

Page 27 of 39

Go Back

Full Screen

Close

- Thus, in our case, the resulting probability density is equal to $\rho(x) = c \cdot \rho_1(x) \cdot \rho_2(x)$, where c is a constant.
- This constant can be determined from the condition $\int \rho(x) dx = 1, \text{ so } \rho(x) = \frac{\rho_1(x) \cdot \rho_2(x)}{\int \rho_1(y) \cdot \rho_2(y) dy}.$
- Often, both probability distributions $\rho_1(x)$ and $\rho_2(x)$ are Gaussian: $\rho_i(x) = \operatorname{const} \exp\left(-\frac{(x-a_i)^2}{2\sigma_i^2}\right)$.
- Here, a_i are means and σ_i are standard deviations.
- Then, as one can easily check, the resulting distribution is also Gaussian, with

$$a = \frac{a_1 \cdot \sigma_1^{-2} + a_2 \cdot \sigma_2^{-2}}{\sigma_1^{-2} + \sigma_2^{-2}}$$
 and $\sigma^{-2} = \sigma_1^{-2} + \sigma_2^{-2}$.

Social Applications of Al

Many Current Social...

So Is There a...

Examples of Unfair...

A Simplified Statistical . .

A Simplified Fuzzy . . .

General Description of . . .

Application to Our...

Partial Confidence...

Home Page
Title Page

Page 28 of 39

Go Back

Full Screen

Close

28. How Is This Applicable to Our Examples

- Let us consider the case of a loan. Here, we have two pieces of information about a loan applicant:
 - the first piece of information is that this person has a good credit history;
 - the second piece of information is that this person lives in a poor area.
- To combine these two pieces of information, let us estimate the corresponding means and st. dev.
- Let us start with the estimates corresponding to people with good credit history.
- In most cases, people with good credit history return their loans and return them on time.
- So, the mean value a_1 of the returned percentage of the loan x is close to 100.

29. Application to Our Examples (cont-d)

- The corresponding standard deviation is σ_1 is close to 0.
- On the other hand, in general, for people living in a poor area, the returned percentages vary:
 - some people living in the poor area struggle, but return their loans,
 - some fail and become unable to return their loans.
- Here, the average a_2 is clearly less that 100, and the standard deviation σ_2 is clearly much larger than σ_1 :

$$\sigma_2 \gg \sigma_1$$
.

• If we multiply both the numerator and the denominator of the formula for a by σ_1^2 , we get:

$$a = \frac{a_1 + a_2 \cdot (\sigma_1^2 / \sigma_2^2)}{1 + \sigma_1^2 / \sigma_2^2}.$$

30. Application to Our Examples (cont-d)

- Since here $\sigma_1 \ll \sigma_2$, we get $a \approx a_1$.
- So, we conclude that:
 - the resulting estimate is fully determined by the fact that the applicant has a good credit history;
 - this estimate is practically *not* affected by the fact that the applicant happens to live in a poor area.
- This is exactly what we wanted the system to conclude.
- Similar arguments help resolve the bird-fly puzzle.
- As a measure of a flying ability, we can take, e.g., the time that a bird can stay in the air.
- No penguin can really fly.
- So for penguins, this time is always small, and the standard deviation of this time is close to 0: $\sigma_1 \approx 0$.

Many Current Social . . . So Is There a ... Examples of Unfair . . . A Simplified Statistical . . A Simplified Fuzzy . . . General Description of . . Application to Our... Partial Confidence... Home Page Title Page **>>** Page 31 of 39 Go Back Full Screen Close Quit

Social Applications of AI

31. Application to Our Examples (cont-d)

- On the other hand, if we consider the population of all the birds, then there is a large variance:
 - some birds can barely fly for a few minutes, while
 - others can fly for days and cross the oceans.
- For this piece of knowledge, the variance is huge and thus, the standard deviation σ_2 is also huge.
- Here too, $\sigma_1 \ll \sigma_2$.
- Thus, our conclusion about Sam's ability to fly:
 - will be determined practically exclusively by the fact that Sam is a penguin,
 - in full agreement with common sense.

- The main difference between a probability density function $\rho(x)$ and a membership function $\mu(x)$ is that:
 - for a probability density function, $\int \rho(x) dx = 1$;
 - for a membership function, $\max_{x} \mu(x) = 1$.
- As a result:
 - if we have a probability density function $\rho(x)$, then we can normalize it as membership function:

$$\mu(x) = \frac{\rho(x)}{\max_{y} \rho(y)};$$

- if we have a membership function $\mu(x)$, then we can normalize it as a probability density function:

$$\rho(x) = \frac{\mu(x)}{\int \mu(y) \, dy}.$$

33. Let Us Use This Relation to Combine Fuzzy Knowledge

- We know how to combine probabilistic knowledge.
- So, if we have two membership functions $\mu_1(x)$ and $\mu_2(x)$, we can combine them as follows.
- First, we transform the membership functions into probability density functions $\rho_i(x) = c_i \cdot \mu_i(x)$, for some constants c_i .
- Second, we combine $\rho_1(x)$ and $\rho_2(x)$ into a single probability density function $\rho(x) = \text{const} \cdot \rho_1(x) \cdot \rho_2(x)$.
- Due to the above relation between probability and fuzzy, we get $\rho(x) = c_3 \cdot \mu_1(x) \cdot \mu_2(x)$ for some constant c_3 .
- Finally, we transform the resulting probability function $\rho(x)$ back into a membership function:

$$\mu(x) = c_4 \cdot \rho(x) = c \cdot \mu_1(x) \cdot \mu_2(x).$$

Many Current Social . . . So Is There a ... Examples of Unfair . . . A Simplified Statistical . . A Simplified Fuzzy . . . General Description of ... Application to Our . . . Partial Confidence... Home Page Title Page **>>** Page 34 of 39 Go Back Full Screen Close Quit

Social Applications of AI

34. This Idea Allows Us to Avoid the Problem of Traditional Defuzzification

- Let us show that this combination rule enables us to avoid the problem of traditional defuzzification.
- Indeed, suppose that we have two rules:
 - one rule corresponding to a very narrow membership function (i.e., in prob. terms, very small σ),
 - and another rule with a very wide membership function (i.e., with large σ).
- Then, as we have mentioned, in the combined function:
 - the contribution of the wide rule will be largely ignored, and
 - the conclusion will be practically identical with what the narrow rule recommends – exactly as we want.

35. What If We Are Only Partly Confident About Some Piece of Knowledge?

- The above combination formula describes how to combine two rules about which we are fully confident.
- But what if we have some rules about which we are only partly confident?
- One way to interpret degree of confidence in a statement is:
 - to have a poll of N experts and,
 - if M out of N experts confirm this statement, to take M/N as the degree of confidence.
- Let us describe the membership function when only one expert confirms the statement by $\mu_1(x)$.

36. Partial Confidence (cont-d)

- In this case, according to the above combination formula:
 - the case when M experts confirm the statement
 - is described by a membership function proportional to $\mu_1^M(x)$.
- In particular, the case of full confidence, when all N experts confirm the statement, we have $\mu(x) \sim \mu_1^N(x)$.
- Thus, $\mu_1(x) \sim (\mu(x))^{1/N}$.
- So, the membership function $\sim \mu_1^M(x)$ corr. to degree of confidence d = M/N is $\sim (\mu(x))^{M/N} = \mu^d(x)$.
- In general:
 - if we have a rule like $A(x) \to B(u)$,
 - then for each input x, our degree of confidence in the conclusion B(u) is equal to $d = \mu_A(x)$.

Many Current Social . . . So Is There a . . . Examples of Unfair . . . A Simplified Statistical . . A Simplified Fuzzy . . . General Description of. Application to Our . . . Partial Confidence... Home Page Title Page **>>** Page 37 of 39 Go Back Full Screen Close Quit

Social Applications of AI

37. Partial Confidence (cont-d)

- Thus, the resulting membership function about u should be proportional to $(\mu_B(u))^{\mu_A(x)}$.
- Usually, we have several rules

$$A_1(x) \to B_1(u), A_2(x) \to B_2(u), \dots$$

• Then we can take the product:

$$(\mu_{B_1}(u))^{\mu_{A_1}(x)} \cdot (\mu_{B_2}(u))^{\mu_{A_2}(x)} \cdot \dots$$

Many Current Social...

Social Applications of AI

So Is There a...

Examples of Unfair...

A Simplified Statistical . . .

A Simplified Fuzzy...

General Description of...

Application to Our...

Home Page

Partial Confidence...

Title Page

Page 38 of 39

Go Back

Full Screen

Close

Close Quit

38. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).

