Why Bernstein Polynomials: Yet Another Explanation

Olga Kosheleva and Vladik Kreinovich

²Olga Kosheleva and Vladik Kreinovich University of Texas at El Paso, 500 W. University El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu

1. What is a general problem

- In many computational situations, it is convenient to approximate a function by a polynomial.
- This is, for example, how most special functions like sin(x), cos(x), and exp(x) are computed in a computer.
- What the computer actually computes is the sum of the first several terms in their Taylor expansion.
- From the computational viewpoint, a natural question is: how can we represent a general polynomial of a given degree?
- The usual way to represent a polynomial f(x) of degree $\leq n$ is to represent it as linear combination of corresponding monomials:

$$f(x) = c_0 \cdot e_0(x) + c_1 \cdot e_1(x) + \ldots + c_n \cdot e_n(x).$$

• Here c_i are arbitrary coefficients, and $e_i(x) = x^i$ for all i.

2. What if we process probabilities: enter Bernstein polynomials

- In principle, in the linear space formed by all such polynomials, we can select a different basis $e_i(x)$.
- For example:
 - in situations when we know that x can only take values from the interval [0, 1] e.g., if x is a probability,
 - it is often convenient to select a different basis $e_i(x) = x^i \cdot (1-x)^{n-i}$.
- Elements of this basis are known as Bernstein polynomials.
- For processing probabilities and other values limited to the interval [0,1] many other bases have been tried.
- However, Bernstein polynomials seem to be the most computationally efficient.

3. Bernstein polynomials (cont-d)

- In particular, in many practical problems, they are efficient in interval computations and in fuzzy computations.
- Then, we are given an algorithm = $f(x_1, ..., x_n)$ and some information about uncertainty of x_i :
 - an interval $[\underline{x}_i, \overline{x}_i]$ or
 - a fuzzy membership function $\mu_i(x_i)$.
- We want to find the resulting uncertainty in y:
 - an interval of possible values $y = f(x_1, ..., x_n)$ when each x_i is in the corresponding interval, or,
 - correspondingly, the membership function $\mu(y)$ corresponding to y.

4. A natural question

- A natural question is: Why is this particular basis more efficient?
- A partial answer to this question was provided in our previous papers.
- In this talk, we provide another explanation for this empirical fact.

5. Why go beyond Taylor polynomials?

- In many practical situations, the usual Taylor-type polynomials, i.e., polynomials represented by the basis $e_i(x) = x^i$, work well.
- \bullet However, when the input x is a probability of some event, these polynomials have a problem.
- Indeed, if the event has probability x, then the opposite effect has probability 1-x.
- For example, if x is the probability that team A wins a match, then (in the absence of ties) 1-x is the probability that the opposite team B wins this match.
- So, if we present the situation from the viewpoint of team B:
 - it is reasonable to consider the new input y = 1 x, and
 - if we select Taylor-type polynomials basis consisting of functions $e_i(x) = (1-x)^i$.
- However, this is a completely different basis.

6. Why go beyond Taylor polynomials (cont-d)

- But whether we consider it from the viewpoint of Team A or Team B, this is the same computational problem.
- It does not make sense to assume that somehow:
 - the selection of the optimal basis for this computational problem
 - depends on which team we are more interested in.
- From this viewpoint, we should select the basis which should not change if we replace x with 1-x.

7. Which of such bases should we select?

- Bernstein polynomials have the above invariant-relative-to-replacing-x-with-(1-x) property.
- However, we can also have many different bases with this property.
- For example, for quadratic polynomials, we can have a basis consisting of the functions x, 1-x, and $x \cdot (1-x)$.
- Which basis should we select?
- In general, Taylor-like polynomials work well.
- So, it make sense to require that:
 - when x is small (i.e., when 1-x is practically equal to 1),
 - the selected functions should be asymptotically equivalent to the usual basis.
- Now, we are ready to formulate our main result.

8. Main Result

- By a basis, we mean a basis $e_0(x)$, $e_1(x)$, ..., $e_n(x)$ in the linear space of all polynomials of degree $\leq n$.
- We say that a basis is *view-invariant* if the set of functions forming the basis does not change if we replace x with 1-x:

$${e_0(x), e_1(x), \dots, e_n(x)} = {e_0(1-x), e_1(1-x), \dots, e_n(1-x)}.$$

• We say that the basis is asymptotically Taylor if for small x, each function $e_i(x)$ is asymptotically equal to x_i , i.e., that

$$\lim_{x \to 0} \frac{e_i(x)}{x^i} = 1.$$

• Proposition. The only view-invariant asymptotically Taylor basis is the basis consisting of Bernstein polynomials.

9. Proof

- When $x \to 0$, each polynomial $a_0 + a_1 \cdot x + \dots$ is asymptotically equivalent to its first non-zero term.
- Thus, the fact that $e_i(x)$ is asymptotically equivalent to x^i means that its first non-zero term is x^i .
- So, the function $e_i(x)$ has the form $e_i(x) = x^i + a_{i+1} \cdot x^{i+1} + \dots$
- All these terms have x^i as one of the factors.
- So, we can conclude that $e_i(x) = x^i \cdot P_i(x)$ for some polynomial $P_i(x) = 1 + a_{i+1} \cdot x + \dots$ for which $P_i(0) = 1$.
- Due to view-invariance, a similar argument applies when we consider dependence on 1-x.

- So, we can conclude:
 - that each element of the basis has the form $(1-x)^j \cdot Q_j(x)$ for some polynomial $Q_j(x)$ for which $Q_j(1) = 1$, and
 - that among n+1 elements of the basis, we should have elements corresponding to all n+1 values $j=0,1,\ldots,n$.
- Let us see what the above two properties imply about the functions $e_i(x)$.
- For this purpose, let us consider these functions one by one, starting with the last one $e_n(x)$.
- Let us first consider the function $e_n(x)$.
- According to what we proved earlier, this function has the form

$$e_n(x) = x^n \cdot P_n(x).$$

- The polynomial $P_n(x)$ cannot have any non-constant terms:
 - otherwise its product with x^n would have degree higher than n, and
 - we consider bases in the space of all polynomials of degree $\leq n$.
- Thus, $P_n(x) = 1$ and $e_n(x) = x^n$.
- From the viewpoint of dependence on 1-x, this function tends to 1 as $1-x\to 0$ i.e., as $x\to 1$.
- Thus, it corresponds to the case when $e_n(x) = (1-x)^j \cdot Q_j(x)$ with j=0.
- Let us now prove, by induction over k, that all the functions $e_n(x), \ldots, e_{n-(k-1)}(x)$ have the form $e_{n-j}(x) = x^{n-j} \cdot (1-x)^j$.
- We have the base case: we proved this statement for k=1.
- To complete the proof by induction, we need to prove the induction step.

- Let us assume that the above statement holds for some value k.
- Let us prove that it is also true for k+1, i.e., let us prove that

$$e_{n-k}(x) = x^{n-k} \cdot (1-x)^k$$
.

- Indeed, according to what we proved, this function:
 - has the form $e_{n-k}(x) = x^{n-k} \cdot P_{n-k}(x)$, i.e.,
 - in its representation as product of irreducible polynomials, it has n-k factors equal to x.
- On the other hand, due to what we also proved, it should also have $(1-x)^j$ as a factor.
- Here, we cannot have j < k, since functions $e_i(x)$ with such factors $(1-x)^j$ already exist they are $e_{n-j}(x)$.
- Since n + 1 basic functions correspond to n + 1 different value j, we cannot have two functions $e_i(x)$ corresponding to the same value j.

- We also cannot have $j \ge k + 1$, since then:
 - the function $e_{n-k}(x)$ should have, as factors, x^{n-k} and $(1-x)^{k+1}$,
 - i.e., have the form $x^{n-k} \cdot (1-x)^{k+1} \cdot P(x)$ and have, thus, degree at least n+1,
 - while we only consider polynomials of degree $\leq n$.
- Thus, the only remaining choice is j = k, in which case $e_{n-k}(x) = x^{n-k} \cdot (1-x)^k \cdot P(x)$ for some polynomial P(x).
- The polynomial P(x) cannot have any non-constant terms:
 - otherwise its product with $x^{n-k} \cdot (1-x)^k$ would have degree higher than n, and
 - we consider bases in the space of all polynomials of degree $\leq n$.
- Thus, P(x) is a constant: P(x) = c for some number c.

- According to what we proved earlier, the polynomial $(1-x)^k \cdot c$ must be equal to 1 when x=0.
- Thus, c = 1 and $e_{n-k}(x) = x^{n-k} \cdot (1-x)^k$.
- The proposition is proven.

15. Acknowledgments

This work was supported in part by:

- National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;
- AT&T Fellowship in Information Technology;
- program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and
- a grant from the Hungarian National Research, Development and Innovation Office (NRDI).