How Difficult Is It to Comprehend a Program That Has Significant Repetitions: Fuzzy-Related Explanations of Empirical Results

Christian Servin¹, Olga Kosheleva², and Vladik Kreinovich²

¹Information Technology Systems Department El Paso Community College (EPCC) 919 Hunter Dr., El Paso, TX 79915-1908, USA cservin1@epcc.edu

²University of Texas at El Paso, 500 W. University El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu

1. Why should we measure comprehension complexity

- Some programs are easier to understand.
- Some programs are more complex and thus, take more time to understand.
- In teaching computing, it is desirable to be able to estimate how much time it will take for students to understand a given program.
- Similar estimates are useful for managing teams of professional programmers.
- When they write new code, we can gauge their productivity, e.g., by the number of lines of code.
- However, it is well known that in many cases, programmers do not write code "from scratch".
- In the process of writing code programmers often use available code snippets.

2. Why should we measure comprehension complexity (cont-d)

- Usually, they modify these snippets so that they can be appropriately incorporated into the newly designed code.
- To be able to do it, the programmer needs first to understand the available code.
- We need to gauge the programmers' productivity and to properly estimate the time needed to complete the corresponding task.
- So, it is desirable to estimate the time needed to comprehend the given code segment.

3. How comprehension complexity is measured now: MCC

- Several measure have been designed to gauge comprehension complexity.
- Judged by the number of citations:
 - the most widely used measure of comprehension complexity
 - is so-called McCabe's cyclomatic complexity MCC, for short.
- Crudely speaking:
 - the complexity of a simple no-branching no-loops program is 1, and
 - each if-statement, each loop adds one to this complexity.

4. Limitation of MCC

- In many programs, parts are very different from each other.
- For such programs, MCC provides a very good measure of comprehension complexity.
- However, many programs contain parts which are very similar.
- This makes perfect sense: there are only so many different clever ideas and ingenious tricks.
- So in a reasonable long program:
 - where lots of these ideas have been applied to make this program more efficient,
 - inevitably we will have the same idea used several times.
- This is similar to the well-known pigeonhole principle often used to prove results in theory of computation.

5. Limitation of MCC (cont-d)

- If N pigeons are all in cages, and:
 - if the overall number of cages n is smaller than the number of pigeons,
 - then there must be at least one cage than contains several pigeons.
- \bullet Similarly, if we have N parts using clever ideas, and:
 - if the number n of used ideas is smaller than N,
 - then there must be at least one idea that is used in several parts of the code.
- When the same idea is used in different parts of the code, these parts become similar.
- The problem is that MCC does not take this similarity into account.

6. Limitation of MCC (cont-d)

- We can consider a two-part code consisting of completely different parts.
- We can also consider two-part code with two similar parts.
- The MCC is the same in both cases the sum of MCCs of both parts.
- Of course, in reality, similarity between the parts makes the code easier to understand.
- It is therefore necessary to take this into account.

7. Experimental data

- Researchers measured the time that it takes to understand the part of the code that for the second, third, etc., times uses the same idea.
- On average, the comprehension complexity C_i of the *i*-th repetition is related to the complexity C_1 of the first repetition by a formula

$$C_i = q^{i-1} \cdot C_1$$
 for $q \approx 0.6$.

- Empirical formulas are helpful.
- However, it is usually more reliable if a formula has some reasonably convincing theoretical explanation.
- This way, we can more sure that this formula derived based on a few cases can be safely applied to other cases as well.
- This is what we do in this talk: we provide a fuzzy-related explanation for the above empirical formula.

8. Our approach

- In our analysis of the problem, we will use natural commonsense ideas about this situation.
- Such ideas are usually described by using imprecise ("fuzzy") words from natural language.
- So, if we want to come up with numerical dependencies, we need to translate these commonsense descriptions into precise terms.
- This need was first well understood in the 1960s by Lotfi Zadeh, who called such translation techniques fuzzy.
- Zadeh developed successful translation techniques for control (and similar situations).
- In this talk, we will use somewhat different but related techniques, also inspired by Zadeh's original ideas.

9. Let us start our analysis

- In general:
 - if we have a code segment with comprehension complexity C,
 - then, if we encounter a similar code segment later on, the comprehension complexity of the consequent sequent should be smaller.
- Of course, the comprehension complexity of this consequent code segment depends on the complexity of the original code segment.
- If the original code segment was difficult to understand, the consequent segment will also be not very simple.
- If the original code segment was rather simple, the consequent segment will be even simpler.
- \bullet So, the comprehension complexity of the consequent code segment depends on the comprehension complexity C of the original code.

- Let us denote comprehension complexity of the consequent code segment by f(C).
- Based on common sense, what can we say about the function f(C)?
- First, we know that f(C) < C.
- Also, we are talking about reasonably small code segments, segments that are, eventually, easy to understand by an average programmer.
- This is especially so in the educational environment, when we start with simple code.
- So, the values C that we are interested in are relatively small.
- We are not talking about complex codes with hidden logic that programmers from competing companies try to reverse engineer.

- We have a situation when:
 - we are interested in the dependence y = f(x) between two quantities x and y, and
 - we know that x is small.
- Such situations are common in physics.
- In such cases, a usual technique is to take into account that:
 - for small number x,
 - its square, cube, etc., are much smaller than the original number.
- For example, for x = 0.1, its square is $x^2 = 0.01 \ll x = 0.1$, and its cube is even smaller.

- Thus, a reasonable idea is:
 - to expand the unknown dependence y = f(x) in Taylor series $y = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots$ and
 - to ignore terms which are quadratic or of higher order in terms of x since these terms are much smaller than x.
- As a result, we get a linear dependence $y = a_0 + a_1 \cdot x$.
- It is important to notice that by "small", physicists mean small in the physical sense – much smaller than possible large values.
- This is not always correlated with the numerical value being small.
- For example, in terms of changing a human state one second is very small.
- However, if we describe the same amount in nanoseconds, we get one billion.

- Mathematically, a billion is a big number, but from the physical viewpoint, the corresponding period is still small.
- Since the value C is small, it makes sense to apply a similar idea to the dependence f(C).
- So, we conclude that $f(C) = a_0 + a_1 \cdot C$ for some a_0 and a_1 .
- When the code segment is very simple, i.e., when $C \approx 0$, a similar consequent segment should also be simple.
- So, we have f(0) = 0.
- Thus, in the linear formula, we have $a_0 = 0$ and $f(C) = a_1 \cdot C$.

14. What we can now explain and what still needs to be explained

- So, we have $C_2 = a_1 \cdot C_1$, $C_3 = a_1 \cdot C_2$, and, in general, $C_{i+1} = a_1 \cdot C_i$.
- By induction, we can conclude that for all i, we have $C_i = a_1^{i-1} \cdot C_1$.
- This is exactly the observed dependence, with $q = a_1$.
- So, we explained the general shape of the formula.
- What remains to be explained if why we have $q \approx 0.6$.
- To explain this value, let us continue our analysis.

15. Let us continue our analysis

- The time needed to comprehend the next segment is significantly smaller than the time needed to comprehend the original segment.
- This decrease is caused by the fact that the consequent segment is similar to the previous one.
- A consequent similar fragment is similar to the previous one.
- However, these two segments cannot be almost identical:
 - if two code segments were almost identical,
 - we would have probably combined them.
- So, it is reasonable to conclude that there is significantly more difference between the two segments than there is similarity.
- How can we gauge this?
- The decrease in time is causes by similarity.

- If we start with time C needed to comprehend the original segment, then:
 - the similarity causes the decrease $q C \cdot q = (1 q) \cdot C$ from C to $q \cdot C$, while
 - the non-similarity leads to the need to still spend the time $q \cdot C$ on comprehending the new segment.
- Thus, the fact that there is more difference than similarity means that the value $(1-q)\cdot C$ is significantly smaller than $q\cdot C$.
- Here we have another natural-language term "significantly smaller".
- How can we describe it?
- Similarly to what we did earlier, we can try to assign:
 - to each numerical value x,
 - a value y that is typical among all the values which are significantly smaller than x.

- In other words, we are looking for a function y = g(x) that would assign such typical value y to each x.
- Similarly to our first idea, we can conclude that the dependence y = g(x) should be linear.
- So, it should have the form $y = a \cdot x$ for some value a.
- To find this value a, we can take into account that now, we have two cases of a quantity being significantly smaller than the other.
- First:
 - the time $q \cdot C$ needed to comprehend the consequent segment is significantly smaller than
 - the time C needs to comprehend the original segment.

- Second:
 - the time $(1-q) \cdot C$ corresponding to similarity between the two segments is significantly smaller than
 - the time $q \cdot C$ corresponding to the difference between the two segments.
- If we apply the above formal description $y = a \cdot x$ of the statement "x is significantly smaller than y", then:
 - from the first case, we conclude that $q \cdot C = a \cdot C$, i.e., that a = q, and
 - from the second case, we conclude that $(1-q) \cdot C = a \cdot q \cdot C$, thus $1-q=q^2$.
- This quadratic equation is easy to solve, so we conclude that

$$q = \frac{\sqrt{5} - 1}{2} = 0.618 \dots \approx 0.6.$$

- \bullet Thus, we have explained the numerical value of the parameter q as well.
- So, the empirical formula is fully explained.
- The above value is known as the golden ratio or golden proportion.
- It is worth mentioning that there are other fuzzy-related arguments that lead to this ratio.

20. Acknowledgments

This work was supported in part by:

- National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;
- AT&T Fellowship in Information Technology;
- program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and
- a grant from the Hungarian National Research, Development and Innovation Office (NRDI).