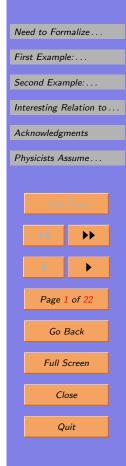
Equations Without Equations: Challenges on a Way to a More Adequate Formalization of Reasoning in Physics

Roberto Araiza, Vladik Kreinovich, and Juan Ferret University of Texas, El Paso, TX 79968, USA raraiza@gmail.com, vladik@utep.edu



1. Need to Formalize Reasoning in Physics

- Fact: in medicine, geophysics, etc., expert systems use automated expert reasoning to help the users.
- *Hope:* similar systems may be helpful in general theoretical physics as well.
- What is needed: describe physicists' reasoning in precise terms.
- Reason: formalize this reasoning inside an automated computer system.
- Formalized part of physicists' reasoning: theories are formulated in terms of PDEs (or ODEs) $\frac{dx}{dt} = F(x)$.
- Meaning: these equations describe how the corresponding fields (or quantities) x change with time t.

2. Mathematician's View of Physics and Its Limitations

- Mathematician's view: we know the initial conditions $x(t_0)$ at some moment of time t_0 .
- We solve the corresponding Cauchy problem and find the values x(t) for all t.
- Limitation: not all solutions to the equation $\frac{dx}{dt} = F(x)$ are physically meaningful.
- Example 1: when a cup breaks into pieces, the corresponding trajectories of molecules make physical sense.
- Example 2: when we reverse all the velocities, we get pieces assembling themselves into a cup.
- Fact: this is physically impossible.
- Fact: the reverse process satisfies all the original (T-invariant) equations.

3. Physicists' Explanation

- Reminder: not all solutions to the physical equation are physically meaningful.
- Explanation: the "time-reversed" solution is non-physical because its initial conditions are "degenerate".
- Clarification: once we modify the initial conditions even slightly, the pieces will no longer get together.
- Conclusion: not only the equations must be satisfied, but also the initial conditions must be "non-degenerate".
- Two challenges in formalizing this idea:
 - how to formalize "non-degenerate";
 - the separation between equations and initial conditions depends on the way equations are presented.
- First challenge: can be resolved by using Kolmogorov complexity and randomness.

4. First Example: Schrödinger's Equation

• Example: Schrödinger's equation

$$\mathrm{i}\hbar\cdot\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\cdot\nabla^2\Psi + V(\vec{r})\cdot\Psi.$$

- In this representation: the potential V is a part of the equation, and $\Psi(\vec{r}, t_0)$ are initial conditions.
- Transformation:
 - we represent $V(\vec{r})$ as a function of Ψ and its derivatives,
 - differentiate the right-hand side by time, and
 - equate the derivative w.r.t. time to 0.
- Result:

$$\frac{\partial}{\partial t} \left(\frac{\mathrm{i}\hbar}{\Psi} \cdot \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \cdot \frac{\nabla^2 \Psi}{\Psi} \right) = 0.$$

5. First Example (cont-d)

• Reminder:

$$\frac{\partial}{\partial t} \left(\frac{\mathrm{i}\hbar}{\Psi} \cdot \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \cdot \frac{\nabla^2 \Psi}{\Psi} \right) = 0.$$

- Mathematically: the new equation (2nd order in time) is equivalent to the Schrödinger's equation:
 - every solution of the Schrödinger's equation for any $V(\vec{r})$ satisfies this new equation, and
 - every solution of the new equation satisfies Schödinger's equation for some $V(\vec{r})$.
- Observation: in the new equation, initial conditions, in effect, include $V(\vec{r})$.
- Conclusion: "non-degeneracy" ("randomness") condition must now include $V(\vec{r})$ as well.

6. Towards 2nd Example: General Physical Theories

- Traditional description of physical theories: in terms of differential equations.
- Example (17 cent.): Newton's mechanics $m \cdot \frac{d^2x}{dt^2} = F$.
- Important discovery (18 cent.): most physical theories can be reformulated as $S \to \min$ for "action" S.
- Example: Newton's mechanics is equivalent to $S = \int L dt \rightarrow \min$, where $L = \frac{1}{2} \cdot m \cdot \dot{x}^2 + V(x)$.
- For functions $f(x_1, ..., x_n)$: minimum when $f(x + dx) \approx f(x)$, so $\frac{\partial f}{\partial x_i} = 0$ for all i.
- For functions of functions ("functionals"): minimum when $S(f + \delta f) \approx S(f)$, so $\frac{\delta S}{\delta f}(x) = 0$ for all x.

7. Euler-Lagrange Equations

- Reminder: physical theories can be formulated in terms of the minimal action principle $S \to \min$.
- Here, $S = \int L dx$ for a "Lagrange" f-n L that depends on the fields φ, \ldots , and their derivatives $\varphi_{,i} \stackrel{\text{def}}{=} \frac{\partial \varphi}{\partial x}$.
- Euler-Lagrange equations: when $S = \int L dx$,

$$\frac{\delta S}{\delta f} = \frac{\partial L}{\partial f} - \frac{\partial}{\partial x_i} \left(\frac{\partial L}{\partial f_{,i}} \right) = 0.$$

- Comment: we use "Einstein's rule" that repeated indices mean summation: e.g., $f_{,i}f_{,i}$ means $\sum_{i} f_{,i}f_{,i}$.
- For a single scalar field φ :

$$\frac{\partial L}{\partial \varphi} - \frac{\partial}{\partial x_i} \left(\frac{\partial L}{\partial \varphi_{,i}} \right) = 0.$$

Need to Formalize . . .

First Example: . . .

Second Example: . . .

Interesting Relation to . . .

Acknowledgments

Physicists Assume...

Title Page

Page 8 of 22

Go Back

Full Screen

Close

Quit

8. Second Example: General Scalar Field

- General scalar theory: $L = L(\varphi, \varphi_{i})$.
- 3-D case: it is reasonable to consider rotation-invariant Lagrangian functions L.
- Conclusion: L depends only on the length $\varphi_{,i}\varphi^{,i}$ of the vector $\varphi_{,i}$, not on its orientation.
- 4-D case: L should be invariant w.r.t. Lorentz transformations (4-D "rotations").
- Conclusion: $L = L(\varphi, a)$, where $a \stackrel{\text{def}}{=} \varphi_{,i} \varphi^{,i}$.
- Traditional formulation: every Lagrangian is possible, but initial conditions $\varphi(x, t_0)$ must be non-degenerate.
- Our result: there exists a 3rd order equation such that:

 $\varphi \text{ satisfies this equation} \Leftrightarrow \\ \varphi \text{ satisfies Euler-Lagrange equation for } some \ L.$

9. Scalar Field: Proof

- Reminder: $L = L(\varphi, a)$, where $a \stackrel{\text{def}}{=} \varphi_{,i} \varphi^{,i}$.
- Euler-Lagrange equations: $\frac{\partial L}{\partial \varphi} \partial_i \frac{\partial L}{\partial \varphi_i} = 0.$
- Using chain rule: $\frac{\partial L(\varphi, a)}{\partial \varphi_i} = \frac{\partial L}{\partial a} \cdot \frac{\partial a}{\partial \varphi_i} = \frac{\partial L}{\partial a} \cdot 2\varphi^i$.
- Conclusion: $L_{,\varphi} \partial_i (2L_{,a} \cdot \varphi_{,i}) = 0.$
- ullet Using chain rule again, we get

$$L_{,\varphi} - 2L_{,a} \cdot \Box \varphi - 2L_{,a\varphi} \cdot (\varphi_{,i}\varphi^{,i}) - 4L_{,aa} \cdot \varphi_{,ij}\varphi^{,i}\varphi^{,j} = 0,$$
where $\Box \varphi \stackrel{\text{def}}{=} \varphi^{,i}_{,i}$.

- Conclusion:
 - if at two points, we have the same values of φ , $\varphi_{,i}\varphi^{,i}$, and $\square \varphi$,
 - then we have same values of $\varphi_{,ij}\varphi^{,i}\varphi^{,j}$.

Need to Formalize . . .

First Example: . . .

Second Example: . . .

Interesting Relation to . . .

Acknowledgments

Physicists Assume . . .

Title Page

Page 10 of 22

Go Back

Full Screen

Close

Quit

10. Scalar Field: Proof (cont-d)

- Reminder: if at two points, we have the same values of φ , $a = \varphi_{,i}\varphi^{,i}$, and $b \stackrel{\text{def}}{=} \Box \varphi$, then we have same values of $c \stackrel{\text{def}}{=} \varphi_{,ij}\varphi^{,i}\varphi^{,j}$.
- Particular case: if we have dx^k for which $\varphi_{,k} \cdot dx^k = 0$, $a_{,k} \cdot dx^k = 0$, and $b_{,k} \cdot dx^k = 0$, then $c_{,k} \cdot dx^k = 0$.
- In geom. terms: if $dx^k \perp \varphi_{,k}$, $dx^k \perp a_{,k}$, and $dx^k \perp b_{,k}$, then $dx^k \perp c_{,k}$.
- Conclusion: $\varphi_{,k}$, $a_{,k}$, $b_{,k}$, and $c_{,k}$ lie in the same 3-plane.
- In algebraic terms: the determinant is 0:

$$\varepsilon_{ijkl} \cdot \varphi_{,i} \cdot a_{,j} \cdot b_{,k} \cdot c_{,l} = 0,$$

where $\varepsilon_{ijkl} = 0$ if some indices are equal and is ± 1 else.

• We get a 3-rd order equation; so, we can predict future evolution – w/o knowing L.

11. Scalar Field: Discussion and Conclusions

- Observation: the new "equation" does not contain L at all.
- Fact: a field φ satisfies the new equation \Leftrightarrow it satisfies the Euler-Lagrange equations for some L.
- Observation:
 - similarly to Wheeler's cosmological "mass without mass" and "charge without charge",
 - we now have "equations without equations".
- Conclusion: when formalizing physical equations:
 - we must not only describe them in a mathematical form,
 - we must also select *one* of the mathematically equivalent forms.

12. Interesting Relation to Dimension of Space-Time

- Reminder: our conclusion is based on the idea that four vectors lie in a 3-D plane.
- Observation: if the dimension of space-time is 3 or smaller, this is always true.
- Conclusion: "equations without equations" are only possible when dimension is ≥ 4 .
- Speculation: maybe this explains why our space-time is 4-D?

13. Interesting Relation to Dimension of Space-Time (cont-d)

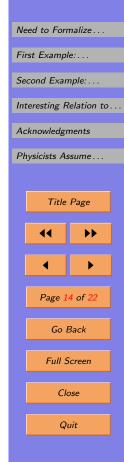
• What about 2 scalar fields φ and ψ : here, preservation of 10 quantities

$$\varphi, \psi, \varphi_{,i}\varphi^{,i}, \psi_{,i}\psi^{,i}, \varphi_{,i}\psi^{,i}, \varphi_{,ij}\varphi^{,i}\varphi^{,j}, \varphi_{,ij}\varphi^{,i}\psi^{,j}, \varphi_{,ij}\psi^{,i}\psi^{,j},$$

$$\psi_{,ij}\varphi^{,i}\varphi^{,j}, \psi_{,ij}\varphi^{,i}\psi^{,j}, \psi_{,ij}\psi^{,i}\psi^{,j}$$

means that $\Box \varphi$ and $\Box \psi$ are the same.

- Conclusion: 11 vectors (gradients of the above quantities) and $(\Box \varphi)_{,k}$ must be in the same 11-D space.
- Observation: this requirement is always true in spaces of dimension ≤ 11 .
- Conclusion: for 2 scalar fields, equations w/o equations are possible in dim ≥ 12 .
- Is this physical? yes: consistent quantum field theory is only possible when dim ≥ 11 .



14. Acknowledgments

This work was supported in part:

- by National Science Foundation grant HRD-0734825, and EAR-0225670 and DMS-0532645 and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

15. Physicists Assume that Initial Conditions and Values of Parameters are Not Abnormal

- To a mathematician, the main contents of a physical theory is its equations.
- Not all solutions of the equations have physical sense.
- Ex. 1: Brownian motion comes in one direction;
- Ex. 2: implosion glues shattered pieces into a statue;
- Ex. 3: fair coin falls heads 100 times in a row.
- *Mathematics:* it is possible.
- *Physics* (and common sense): it is not possible.
- Our objective: supplement probabilities with a new formalism that more accurately captures the physicists' reasoning.

16. A Seemingly Natural Formalizations of This Idea

- *Physicists:* only "not abnormal" situations are possible.
- Natural formalization: idea.
 - If a probability p(E) of an event E is small enough,
 - then this event cannot happen.
- Natural formalization: details. There exists the "smallest possible probability" p_0 such that:
 - if the computed probability p of some event is larger than p_0 , then this event can occur, while
 - if the computed probability p is $\leq p_0$, the event cannot occur.
- Example: a fair coin falls heads 100 times with prob. 2^{-100} ; it is impossible if $p_0 \ge 2^{-100}$.

17. The Above Formalization of the Notion of "Typical" is Not Always Adequate

- *Problem:* every sequence of heads and tails has exactly the same probability.
- Corollary: if we choose $p_0 \ge 2^{-100}$, we will thus exclude all sequences of 100 heads and tails.
- However, anyone can toss a coin 100 times.
- This proves that some such sequences are physically possible.
- Similar situation: Kyburg's lottery paradox:
 - in a big (e.g., state-wide) lottery, the probability of winning the Grand Prize is very small;
 - a reasonable person should not expect to win;
 - however, some people do win big prizes.

18. New Idea

- Example: height:
 - if height is ≥ 6 ft, it is still normal;
 - if instead of 6 ft, we consider 6 ft 1 in, 6 ft 2 in, etc., then $\exists h_0$ s.t. everyone taller than h_0 is abnormal;
 - we are not sure what is h_0 , but we are sure such h_0 exists.
- General description: on the universal set U, we have sets $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_n \supseteq \ldots$ s.t. $\cap A_n = \emptyset$.
- Example: A_1 = people w/height ≥ 6 ft, A_2 = people w/height ≥ 6 ft 1 in, etc.
- A set $T \subseteq U$ is called a set of typical (not abnormal) elements if

 \forall definable sequence of sets A_n for which $A_n \supseteq A_{n+1}$ for all n and $\cap A_n = \emptyset$, $\exists N$ for which $A_N \cap T = \emptyset$.

19. Coin Example

- Universal set $U = \{H, T\}^{\mathbb{N}}$
- Here, A_n is the set of all the sequences that start with n heads and have at least one tail.
- The sequence $\{A_n\}$ is decreasing and definable, and its intersection is empty.
- Therefore, for every set T of typical elements of U, there exists an integer N for which $A_N \cap T = \emptyset$.
- This means that if a sequence $s \in T$ is not abnormal and starts with N heads, it must consist of heads only.
- In physical terms: it means that
 - a random sequence (i.e., a sequence that contains both heads and tails) cannot start with N heads.
- This is exactly what we wanted to formalize.

20. Possible Practical Use of This Idea: When to Stop an Iterative Algorithm

- Situation in numerical mathematics:
 - we often know an iterative process whose results x_k are known to converge to the desired solution x,
 - but we do not know when to stop to guarantee that

$$d_X(x_k, x) \leq \varepsilon.$$

- Heuristic approach: stop when $d_X(x_k, x_{k+1}) \leq \delta$ for some $\delta > 0$.
- Example: in physics, if 2nd order terms are small, we use the linear expression as an approximation.

21. Result

- Let $\{x_k\} \in S$, k be an integer, and $\varepsilon > 0$ a real number.
- We say that x_k is ε -accurate if $d_X(x_k, \lim x_p) \leq \varepsilon$.
- Let $d \ge 1$ be an integer.
- By a stopping criterion, we mean a function $c: X^d \to R_0^+ = \{x \in R \mid x \geq 0\}$ that satisfies the following two properties:
 - If $\{x_k\} \in S$, then $c(x_k, \dots, x_{k+d-1}) \to 0$.
 - If for some $\{x_n\} \in S$ and $k, c(x_k, ..., x_{k+d-1}) = 0$, then $x_k = ... = x_{k+d-1} = \lim x_p$.
- Result: Let c be a stopping criterion. Then, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that
 - if $c(x_k, \ldots, x_{k+d-1}) \leq \delta$, and the sequence $\{x_n\}$ is not abnormal,
 - then x_k is ε -accurate.

Need to Formalize...

First Example:...

Second Example:...

Interesting Relation to...

Acknowledgments

Physicists Assume...

Quit