Why Encubation?

Vladik Kreinovich, Rohan Baingolkar, Swapnil S. Chauhan, and Ishtjot S. Kamboj

Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
vladik@utep.edu
rubaingolkar@miners.utep.edu
sschauhan@miners.utep.edu
iskambo@miners.utep.edu

1. What Is Encubation

- It is known that:
 - some algorithms are feasible, and
 - some take too long to be practical.
- For example:
 - if the running time of an algorithm is 2^n , where n = len(x) is the bit size of the input x,
 - then already for n = 500, the computation time exceeds the lifetime of the Universe.
- In computer science, it is usually assumed that an algorithm A is feasible if and only if A is polynomial-time.

2. What Is Encubation (cont-d)

- In other words, an algorithm is feasible if:
 - its number of computational steps $t_A(x)$ on any input x
 - is bounded by a polynomial P(n) of the input length n = len(x).
- An interesting *encubation* phenomenon is that:
 - once we succeed in finding a polynomial-time algorithm for solving a problem,
 - eventually it turns out to be possible to further decrease its computation time
 - until we either reach the cubic time $t_A(x) \approx n^3$ or reach some even faster time n^{α} for $\alpha < 3$.

3. How to Explain Encubation?

- According to modern physics, the Universe has $\approx 10^{90}$ particles.
- There are $\approx 10^{42}$ moments of time.
- The number of moments of time can be obtained if we divide:
 - the lifetime of the Universe $(T \approx 20 \text{ billion years})$
 - by the smallest possible time Δt .
- Δt is the time that light passes through the size-wise smallest possible stable particle a proton.
- This means that overall:
 - even if each elementary particle is a processor that operates as fast as physically possible,
 - the largest possible number of computational steps that we can perform is $10^{90} \cdot 10^{42} = 10^{132}$.

4. How to Explain Encubation (cont-d)

- This is the largest possible number of computational steps t(n).
- The largest possible input size comes if you input 1 bit per unit time.
- Thus, during the lifetime of the Universe, the largest possible length of the input is $n \approx 10^{42}$ bits.
- If an algorithm is feasible, then:
 - for the largest possible length n of the input
 - it should still perform the physically possible number of steps.
- For $t(n) \approx n^{\alpha}$ and $n \approx 10^{42}$ this means that $t(n) \approx n^{\alpha} \leq 10^{132}$.
- Thus, we get $\alpha \leq \frac{132}{42} = \frac{22}{7} \approx 3$.

5. How to Explain Encubation (cont-d)

- For $t_A(n) = n^{\alpha}$, we got $\alpha \leq \frac{22}{7} \approx 3$.
- This is exactly what we want to explain.
- Comment. Since $\frac{22}{7} \approx \pi$, maybe π and not 3 is the actual upper bound?

6. What About Human Computations?

- What if instead computability in a computer we consider computability in a human brain?
- Let us repeat similar computations for such human computing.
- A human life lasts for ≈ 80 years.
- Each year has ≈ 30 million second, so overall, we get $\approx 2.4 \cdot 10^9$ seconds.
- Brain processing is performed by neurons.
- Typical neurons involved in thinking and processing data have an operation time about 100 milliseconds.
- This is about 0.1 seconds.
- Thus, during the lifetime, we have $\approx 2.4 \cdot 10^{10}$ moments of time.

7. Human Computations (cont-d)

- There are about 10^{10} neuron in a brain.
- Thus, overall:
 - if all the neurons are active all the time,
 - we can perform $t(n) \approx (2.4 \cdot 10^{10}) \cdot 10^{10} \approx 10^{20}$ computational steps.
- Similarly to the physical case:
 - we can gauge the largest possible size
 - by assuming that enter 1 bit every single moment of time.
- Thus, the largest input size is $n \approx 10^{10}$.

8. Human Computations (cont-d)

- Similarly to the physical case, let us check for which α :
 - the number of computational steps t(n) needed to process the largest possible input $n \approx 10^{10}$
 - does not exceed the largest possible number of computation al steps: $t(n) = n^{\alpha} \le 10^{20}$.
- In this case, we conclude that $\alpha \leq 2$.
- So, only quadratic-time (and faster) algorithms are feasible in terms of human computations.
- This makes sense; for example:
 - sorting algorithms that describe how we sort by hand (such as insertion sort),
 - are indeed quadratic-time.

