Uncertainty in Cyberinfrastructure: Results, Algorithms, Challenges, and Request for Collaboration

Ann Gates, Vladik Kreinovich, Paulo Pinheiro da Silva, Craig Tweedie, Leonardo Salayandia, and Christian Servin

> Center of Excellence for Sharing resources for the Advancement of Research and Education through Cyberinfrastructure Cyber-ShARE, University of Texas at El Paso (UTEP) http://trust.cs.utep.edu/cybershare/ contact email vladik@utep.edu

1. Cyberinfrastructure: A Brief Overview

- Practical problem: need to combine geographically separate computational resources.
- Centralization of computational resources traditional approach to combining computational resources.
- Limitations of centralization:
 - need to reformat all the data;
 - need to rewrite data processing programs: make compatible w/selected formats and w/each other
- Cyberinfrastructure a more efficient approach to combining computational resources:
 - keep resources at their current locations, and
 - in their current formats.
- Technical advantages of cyberinfrastructure: a brief summary.

Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 2 of 26 Go Back Full Screen Close

2. Data Processing vs. Data Fusion

- ullet Practically important situation: difficult to measure the desired quantity y with a given accuracy.
- Data processing:
 - measure related easier-to-measure quantities x_1, \ldots, x_n ;
 - estimate y from the results \widetilde{x}_i of measuring x_i as $\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$.
- Example: seismic inverse problem.
- Data fusion:
 - measure the quantity y several times;
 - combine the results $\widetilde{y}_1, \ldots \widetilde{y}_n$ of these measurements.
- Specifics of cyberinfrastructure: first looks for stored results \tilde{x}_i (corr., \tilde{y}_i), measure only if necessary.
- Combination of data processing and data fusion.

Data Processing vs. . . .

Need for Uncertainty...

Uncertainty of the . . .

Typical Situation: . . .

Case of Data Processing

Case of Data Processing
Beyond Probabilistic...

Case Study: Seismic . . .

Conclusions

Request for Collaboration

Acknowledgments

Go Back

Full Screen

Close

3. Need for Uncertainty Propagation, and for Provenance of Uncertainty

- Need for uncertainty propagation.
 - main reasons for data processing and data fusion: accuracy is not high enough;
 - we must make sure that after the data processing (data fusion), we get the desired accuracy.
- In cyberinfrastructure this is especially important:
 - accuracy varies greatly, and
 - we do not have much control over these accuracies.
- Need for the provenance of uncertainty:
 - sometimes, the resulting accuracy is still too low;
 - it is desirable to find out which data points contributed most to the inaccuracy.

Data Processing vs.... Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 4 of 26 Go Back Full Screen Close Quit

Uncertainty of the Results of Direct Measurements: Probabilistic and Interval Approaches

- Manufacturer of the measuring instrument (MI) supplies Δ_i s.t. $|\Delta x_i| \leq \Delta_i$, where $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i - x_i$.
- The actual (unknown) value x_i of the measured quantity is in the interval $\mathbf{x}_i = [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i].$
- Probabilistic uncertainty: often, we know the probabilities of different values $\Delta x_i \in [-\Delta_i, \Delta_i]$.
- How probabilities are determined: by comparing our MI with a much more accurate (standard) MI.
- Interval uncertainty: in two cases, we do not determine the probabilities:
 - cutting-edge measurements;
 - measurements on the shop floor.
- In both cases, we only know that $x_i \in [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i]$.

Data Processing vs. . . .

Need for Uncertainty . . .

Uncertainty of the . . . Typical Situation: . . .

Case of Data Processing

Beyond Probabilistic . . .

Case Study: Seismic . . .

Conclusions

Request for Collaboration

Acknowledgments Title Page

Page 5 of 26

Go Back

Full Screen

Close

Typical Situation: Measurement Errors are Reasonably Small

- Typical situation:
 - direct measurements are accurate enough;
 - the resulting approximation errors Δx_i are small;
 - terms which are quadratic (or of higher order) in Δx_i can be safely neglected.
- Example: for an error of 1%, its square is a negligible 0.01%.
- Linearization:
 - expand f in Taylor series around the point $(\widetilde{x}_1,\ldots,\widetilde{x}_n)$;
 - restrict ourselves only to linear terms:

$$\Delta y = c_1 \cdot \Delta x_1 + \ldots + c_n \cdot \Delta x_n,$$
where $c_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i}$.

Need for Uncertainty . . .

Data Processing vs. . . .

Uncertainty of the . . .

Typical Situation: . . .

Case of Data Processing

Beyond Probabilistic . . .

Case Study: Seismic . . .

Conclusions

Request for Collaboration

Acknowledgments Title Page

Page 6 of 26

Go Back

Full Screen

Close

6. Case of Data Processing

• Propagation (probabilistic case): if Δx_i are independent with st. dev. σ_i (and 0 mean), then Δy has st. dev.

$$\sigma^2 = c_1^2 \cdot \sigma_1^2 + \ldots + c_n^2 \cdot \sigma_n^2.$$

- Provenance:
 - we know which component σ^2 comes from the *i*-th measurement;
 - we can predict how replacing the *i*-th measurement with a more accurate one $(\sigma_i^{\text{new}} \ll \sigma_i)$ will affect σ^2 .
- Propagation of interval uncertainty:

$$\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n.$$

• We can predict how replacing the *i*-th measurement with a more accurate one $(\Delta_i^{\text{new}} \ll \Delta_i)$ will affect Δ .

Beyond Probabilistic and Interval Uncertainty

- *Up to now:* we considered two extreme situations:
 - probabilistic uncertainty, when we know all the probabilities;
 - interval uncertainty, when we have no information about the probabilities.
- Fact: probabilistic situation is a particular case of the interval situation.
- Conclusion: interval bounds are wider.
- In practice: often, we have partial information about probabilities.
- As a result:
 - probabilistic bounds are too narrow,
 - interval bounds are too wide.
- We need: intermediate bounds.

Need for Uncertainty . . .

Uncertainty of the . . .

Data Processing vs. . . .

Typical Situation: . . . Case of Data Processing

Beyond Probabilistic . . .

Conclusions

Case Study: Seismic . . .

Request for Collaboration

Acknowledgments

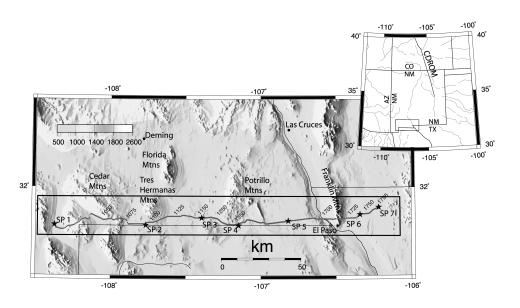
Title Page

Go Back

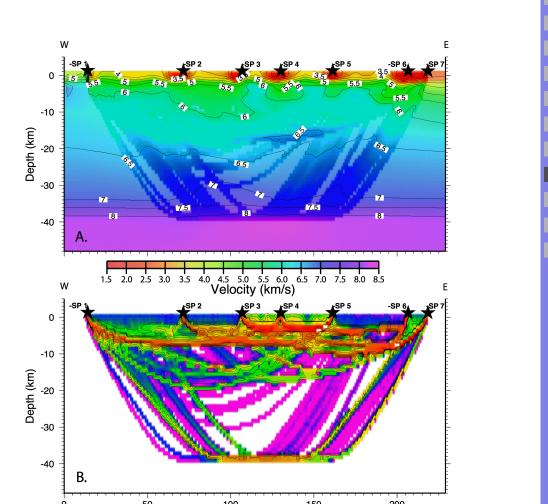
Full Screen

Close

8. Case Study: Seismic Inverse Problem in the Geosciences

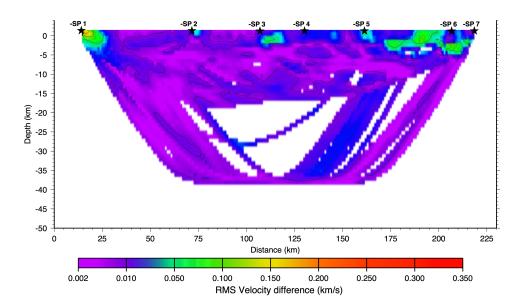


Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 9 of 26 Go Back Full Screen Close Quit



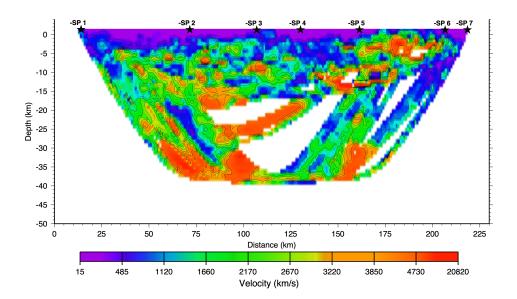
Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 10 of 26 Go Back Full Screen Close Quit

9. Estimating Uncertainty, First Try: Probabilistic Approach



Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 11 of 26 Go Back Full Screen Close Quit

10. Estimating Uncertainty, Second Try: Interval Approach



Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 12 of 26 Go Back Full Screen Close Quit

11. **Towards a Better Estimate: Revisiting Estimation** Algorithms Under Probabilistic and Interval Uncertainty

- Linearization: $\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$, where $c_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i}$.
- Formulas: $\sigma^2 = \sum_{i=1}^n c_i^2 \cdot \sigma_i^2$, $\Delta = \sum_{i=1}^n |c_i| \cdot \Delta_i$.
- Numerical differentiation: n iterations, too long.
- Monte-Carlo approach: if Δx_i are Gaussian w/ σ_i , then $\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$ is also Gaussian, w/desired σ .
- Advantage: # of iterations does not grow with n.
- Interval estimates: if Δx_i are Cauchy, $w/\rho_i(x) = \frac{\Delta_i}{\Delta^2 + x^2}$, then $\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$ is also Cauchy, w/desired Δ .

Data Processing vs. . . .

Need for Uncertainty . . .

Uncertainty of the . . .

Typical Situation: . . . Case of Data Processing

Beyond Probabilistic . . .

Case Study: Seismic . . .

Conclusions

Request for Collaboration

Acknowledgments Title Page

Page 13 of 26

Go Back

Full Screen

Close

Resulting Fast (Linearized) Algorithm for Estimating Interval Uncertainty

- Apply f to \widetilde{x}_i : $\widetilde{y} := f(\widetilde{x}_1, \dots, \widetilde{x}_n)$;
- For $k = 1, 2, \dots, N$, repeat the following:
 - use RNG to get $r_i^{(k)}$, $i = 1, \ldots, n$ from U[0, 1];
 - get st. Cauchy values $c_i^{(k)} := \tan(\pi \cdot (r_i^{(k)} 0.5));$
 - compute $K := \max_{i} |c_{i}^{(k)}|$ (to stay in linearized area);
 - simulate "actual values" $x_i^{(k)} := \widetilde{x}_i \delta_i^{(k)}$, where $\delta_i^{(k)} := \Delta_i \cdot c_i^{(k)} / K;$
 - simulate error of the indirect measurement:

$$\delta^{(k)} := K \cdot \left(\widetilde{y} - f\left(x_1^{(k)}, \dots, x_n^{(k)}\right) \right);$$

• Solve the ML equation $\sum_{k=1}^{N} \frac{1}{1+\left(\frac{\delta^{(k)}}{\Lambda}\right)^2} = \frac{N}{2}$ by bisec-

tion, and get the desired Δ .

Data Processing vs. . . . Need for Uncertainty . . .

Uncertainty of the . . .

Typical Situation: . . .

Case of Data Processing

Beyond Probabilistic . . .

Case Study: Seismic . . . Conclusions

Request for Collaboration

Acknowledgments

Title Page

Go Back

Full Screen

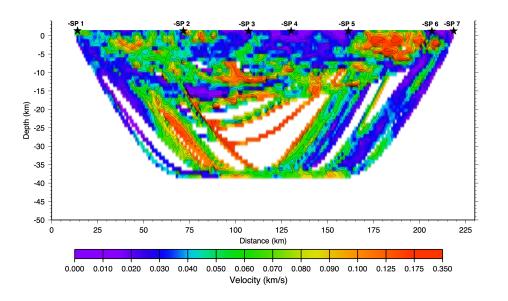
Close

13. A New (Heuristic) Approach

- Problem: guaranteed (interval) bounds are too high.
- Gaussian case: we only have bounds guaranteed with confidence, say, 90%.
- How: cut top 5% and low 5% off a normal distribution.
- New idea: to get similarly estimates for intervals, we "cut off" top 5% and low 5% of Cauchy distribution.
- *How:*
 - find the threshold value x_0 for which the probability of exceeding this value is, say, 5%;
 - replace values x for which $x > x_0$ with x_0 ;
 - replace values x for which $x < -x_0$ with $-x_0$;
 - use this "cut-off" Cauchy in error estimation.
- Example: for 95% confidence level, we need $x_0 = 12.706$.

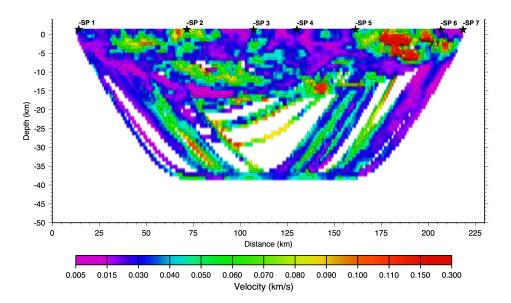
Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 15 of 26 Go Back Full Screen Close Quit

14. Heuristic Approach: Results with 95% Confidence Level



Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 16 of 26 Go Back Full Screen Close Quit

15. Heuristic Approach: Results with 90% Confidence Level



16. Conclusions

- In the past: communications were much slower.
- Conclusion: use centralization.
- At present: communications are much faster.
- Conclusion: use cyberinfrastructure.
- Related problems:
 - gauge the the uncertainty of the results obtained by using cyberinfrastructure;
 - which data points contributed most to uncertainty;
 - how an improved accuracy of these data points will improve the accuracy of the result.
- We described: algorithms for solving these problems.
- Additional problem: what if interval estimates are too wide and probabilistic estimates are too narrow.

Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 18 of 26 Go Back Full Screen Close

17. Request for Collaboration

- Our main objective: enhance applications of CI.
- We welcome: practical problems in need of CI and uncertainty estimation.
- We expect: some problems are similar to GEON ones. For such problems,
 - in collaboration with researchers working on these problems,
 - we will be able to apply (and, if necessary adjust and modify) our CI techniques.
- We also expect: that some practical problems will lead
 - to new challenges and thus,
 - to the development of new techniques for gauging uncertainty in CI.

18. Acknowledgments

This work was supported in part by:

- by National Science Foundation grants HRD-0734825, EAR-0225670, and EIA-0080940,
- by Texas Department of Transportation contract No. 0-5453,
- by the Japan Advanced Institute of Science and Technology (JAIST) International Joint Research Grant 2006-08, and
- and by the Max Planck Institut für Mathematik.

Data Processing vs. . . . Need for Uncertainty . . . Uncertainty of the . . . Typical Situation: . . . Case of Data Processing Beyond Probabilistic . . . Case Study: Seismic . . . Conclusions Request for Collaboration Acknowledgments Title Page Page 20 of 26 Go Back Full Screen Close Quit

19. **Propagation of Probabilistic Uncertainty Through Data Fusion**

• Situation: we know several results $\widetilde{y}_1, \ldots, \widetilde{y}_n$ of measuring the same quantity y with st. dev. σ_i :

$$\rho_i(y) = \frac{1}{\sqrt{2\pi} \cdot \sigma_i} \cdot \exp\left(-\frac{(y - \widetilde{y}_i)^2}{2\sigma_i^2}\right).$$

• Resulting probability density:

$$\rho(y) = \rho_1(y) \cdot \dots \cdot \rho_n(y) = \text{const-exp}\left(-\sum_{i=1}^n \frac{(y-\widetilde{y}_i)^2}{2\sigma_i^2}\right).$$

• Maximum Likelihood Estimate: $\rho(y) \to \max$, hence

$$\widetilde{y} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}} \cdot \sum_{i=1}^{n} \frac{\widetilde{y}_i}{\sigma_i^2}.$$

Data Processing vs. . . .

Need for Uncertainty . . .

Uncertainty of the . . .

Typical Situation: . . .

Case of Data Processing

Beyond Probabilistic . . . Case Study: Seismic . . .

Conclusions

Request for Collaboration

Acknowledgments

Title Page

Page 21 of 26

Go Back

Full Screen

Close

20. **Propagation of Probabilistic Uncertainty Through** Data Fusion (cont-d)

• Reminder:

$$\widetilde{y} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}} \cdot \sum_{i=1}^{n} \frac{\widetilde{y_i}}{\sigma_i^2}.$$

• Resulting st. dev. σ for \widetilde{y} : \widetilde{y} is a linear combination of independent normal \widetilde{y}_i , hence its st. dev. is:

$$\sigma^2 = \frac{1}{\left(\sum_{i=1}^n \frac{1}{\sigma_i^2}\right)^2} \cdot \sum_{i=1}^n \frac{\sigma_i^2}{\sigma_i^4} = \frac{1}{\left(\sum_{i=1}^n \frac{1}{\sigma_i^2}\right)^2} \cdot \sum_{i=1}^n \frac{1}{\sigma_i^2} = \frac{1}{\sum_{i=1}^n \frac{1}{\sigma_i^2}}.$$

• Simplified expression:

$$\frac{1}{\sigma^2} = \sum_{i=1}^n \frac{1}{\sigma_i^2}.$$

• Provenance: we can predict how replacing σ_i with a "more accurate" value $\sigma_i^{\text{new}} \ll \sigma_i$ affects σ .

Data Processing vs. . . .

Need for Uncertainty . . .

Uncertainty of the . . .

Typical Situation: . . .

Case of Data Processing

Beyond Probabilistic . . . Case Study: Seismic . . .

Conclusions

Request for Collaboration

Acknowledgments

Title Page

Page 22 of 26

Go Back

Full Screen

Close

21. Propagation of Interval Uncertainty Through Data Fusion

- Situation: we know several results $\widetilde{y}_1, \ldots, \widetilde{y}_n$ of measuring the same quantity y with bounds Δ_i .
- Analysis: the unknown (actual) value y belongs to n intervals $\mathbf{y}_i \stackrel{\text{def}}{=} [\widetilde{y}_i \Delta_i, \widetilde{y}_i + \Delta_i].$
- Conclusion: the range \mathbf{y} of possible values of y is the intersection $\mathbf{y} = [\underline{y}, \overline{y}] = \mathbf{y}_1 \cap \ldots \cap \mathbf{y}_n$ of intervals \mathbf{y}_i : $[\max(\widetilde{y}_1 \Delta_1, \ldots, \widetilde{y}_n \Delta_n), \min(\widetilde{y}_1 + \Delta_1, \ldots, \widetilde{y}_n + \Delta_n)].$
- Provenance a problem: if we replace Δ_i with the same new value $\Delta_i^{\text{new}} \ll \Delta_i$, we may get different accuracies.
- Example: $\mathbf{y}_1 = [-1, 1], \ \mathbf{y}_2 = [-2, 2], \ \text{and} \ \mathbf{y} = [-1, 1].$ If we use $\Delta_2^{\text{new}} = 1 \ll \Delta_2 = 2$, we may get:
 - $y_2 = [-1, 1]$; then y = [-1, 1] is unchanged.
 - $\mathbf{y}_2 = [0, 2]$; then $\mathbf{y} = [0, 1]$ is much narrower.

Data Processing vs....

Need for Uncertainty...

Uncertainty of the...

Typical Situation:...

Case of Data Processing

Beyond Probabilistic . . .

Case Study: Seismic . . .

Conclusions

Request for Collaboration

Acknowledgments

Title Page

Page 23 of 26

Go Back

Full Screen

Close

Pre-Estimating the Accuracy of Data Fusion Under Interval Uncertainty: A Problem

- We know: the *i*-th measurement error $\Delta y_i \in [-\Delta_i, \Delta_i]$.
- Fact: different values Δy_i lead to different intersections

$$\mathbf{y} = [\underline{y}, \overline{y}] = \bigcap_{i=1}^{n} [(y + \Delta y_i) - \Delta_i, (y + \Delta y_i) + \Delta_i].$$

- Reasonable assumptions:
 - Δy_i is uniformly distributed on $[-\Delta_i, \Delta_i]$;
 - Δy_i and Δy_i $(i \neq j)$ are independent;
 - we allow a small probability p_0 of mis-estimation.
- Formulation of the problem: find the smallest Δ s.t.:
 - the probability to have $\overline{y} \leq y + \Delta$ is at least $1 p_0$, and
 - the probability to have $y \geq y \Delta$ is also $\geq 1 p_0$.

Data Processing vs. . . . Need for Uncertainty . . .

Uncertainty of the . . .

Typical Situation: . . .

Case of Data Processing

Beyond Probabilistic . . . Case Study: Seismic . . .

Conclusions

Request for Collaboration

Acknowledgments

Go Back

Full Screen

Close

Pre-Estimating the Accuracy of Data Fusion Under Interval Uncertainty: Solution

- Resulting formula: when fusion is efficient $(\Delta \ll \Delta_i)$, we get $\frac{1}{\Delta} = \text{const} \cdot \sum_{i=1}^{n} \frac{1}{\Delta_i}$, with const = $2|\ln(p_0)|$.
- Example: for $\Delta_1 = \ldots = \Delta_n$, we get $\Delta = \frac{\text{const}}{\cdot} \cdot \Delta_1$.
- Prob. case: $\frac{1}{\sigma^2} = \text{const} \cdot \sum_{i=1}^{n} \frac{1}{\sigma_i^2}$, w/ Δ_i instead of σ_i^2 .
- Observation: for prob. uncertainty, $\sigma \sim \frac{\text{const}}{\sqrt{n}} \cdot \sigma_1$.
- Data processing: $\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i \text{ vs. } \sigma^2 = \sum_{i=1}^{n} |c_i|^2 \cdot \sigma_i^2.$
- ~: \parallel and sequential resistors $\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i}$, $R = \sum_{i=1}^{n} R_i$.

Data Processing vs. . . . Need for Uncertainty . . .

Uncertainty of the . . .

Typical Situation: . . .

Case of Data Processing

Beyond Probabilistic . . .

Case Study: Seismic . . .

Conclusions

Request for Collaboration

Title Page

Acknowledgments

Go Back

Full Screen

Close

24. Optimal Data Processing and Data Fusion

- Problem: find the least expensive way to guarantee the given accuracy σ or Δ .
- Costs: $c_i^{\text{prob}}(\sigma_i) = \frac{C_i}{\sigma_i^{\alpha_i}}$ and $c_i^{\text{int}}(\Delta_i) = \frac{C_i}{\Delta^{\alpha_i}}$.
- Case of data fusion: we measure the same quantity, so $C_1 = \ldots = C_n$ and $\alpha_1 = \ldots = \alpha_n$.
- Optimal data fusion: minimizing cost, we get $\sigma_1 = \ldots = \sigma_n = \sqrt{n} \cdot \sigma$ and $\Delta_1 = \ldots = \Delta_n = n \cdot \Delta$.
- Optimal data processing: probabilistic case.

$$\sigma_i = \left(\frac{\alpha_i \cdot C_i}{2\lambda \cdot c_i^2}\right)^{1/(2+\alpha_i)}, \text{ with } \sum_{i=1}^n c_i^2 \cdot \left(\frac{\alpha_i \cdot C_i}{2\lambda \cdot c_i^2}\right)^{2/(2+\alpha_i)} = \sigma^2.$$

• Optimal data processing: interval case.

$$\Delta_i = \left(\frac{\alpha_i \cdot C_i}{\lambda \cdot |c_i|}\right)^{1/(1+\alpha_i)}, \text{ with } \sum_{i=1}^n |c_i| \cdot \left(\frac{\alpha_i \cdot C_i}{\lambda \cdot |c_i|}\right)^{2/(2+\alpha_i)} = \Delta.$$

Cyberinfrastructure: . . .

Data Processing vs. . . .

Need for Uncertainty . . .

Uncertainty of the...

Typical Situation:...

Case of Data Processing

Beyond Probabilistic...

Case Study: Seismic...
Conclusions

Request for Collaboration

Acknowledgments

Title Page

4

Page 26 of 26

Go Back

Full Screen

Close