## Derivation ofHill's Equations from Scale Invariance

Andres Ortiz

Department of Mathematical Sciences University of Texas at El Paso El Paso, Texas 79968, USA aortiz19@miners.utep.edu

supervised by Vladik Kreinovich vladik@utep.edu

Molecular Binding in . . . Hill's Equation: . . . Chemical Kinetics: . . . Chemical Kinetics and . . Chemical Kinetics and . . Towards . . . Mathematical Analysis Generalized . . . Conclusions Home Page Page 1 of 11

**>>** 

Go Back

Full Screen

Close

• Many biochemical reactions involve binding of a smaller molecule *L* (called *ligand*) to a large macromolecule *P*:

$$L + P \leftrightarrow LP$$
.

- Examples:
  - oxygen binds to haemoglobin: this is one of the most important biochemical reactions;
  - acid content in the stomach regulated by histamine binding to histamine receptor (special protein);
  - human serum albumin, protein in human blood plasma, carries nutrients as ligands.
- It is desirable to predict the proportion of the bound macromolecules  $\theta \stackrel{\text{def}}{=} \frac{[LP]}{[P] + [LP]}$ .



• Reminder: it is desirable to predict the proportion  $\theta$  of the bound macromolecules:

$$\theta \stackrel{\text{def}}{=} \frac{[LP]}{[P] + [LP]}.$$

• In many cases, this proportion is described by a formula (called *Hill's equation*)

$$\theta = \frac{[L]^n}{K_d + [L]^n}.$$

- In this formula,  $K_d$  and n are empirical parameters.
- Since its invention in 1910, Hill's equation remains a semi-empirical formula.
- It is desirable to provide a theoretical explanation for this formula.

Molecular Binding in . . . Hill's Equation: . . . Chemical Kinetics: . . . Chemical Kinetics and . . Chemical Kinetics and . . Towards . . . Mathematical Analysis Generalized . . . Conclusions Home Page Title Page Page 3 of 11 Go Back Full Screen Close

#### 3. Chemical Kinetics: Reminder

- The quantitative results of chemical reactions are usually described by equations of chemical kinetics (CK).
- In CK, the reaction rate is proportional to the product of the concentrations [c] of all reactants c.
- Examples:
  - for the reaction  $A + B \rightarrow C$ , the reaction rate is proportional to the product  $[A] \cdot [B]$ :

$$\frac{d[A]}{dt} = -k \cdot [A] \cdot [B]; \quad \frac{d[B]}{dt} = -k \cdot [A] \cdot [B]; \quad \frac{d[C]}{dt} = k \cdot [A] \cdot [B].$$

- for the reaction  $2A + B \rightarrow C$ , the reaction rate is proportional to  $[A] \cdot [A] \cdot [B]$ .
- These formulas explain specific cases of Hill's equation, corresponding to the case when n is an integer.

Molecular Binding in . . . Hill's Equation: . . . Chemical Kinetics: . . . Chemical Kinetics and . . Chemical Kinetics and . . Towards . . . Mathematical Analysis Generalized . . . Conclusions Home Page Title Page **>>** Page 4 of 11 Go Back Full Screen Close

# 4. Chemical Kinetics and the n = 1 Case of Hill's Equation

- We have two reactions:  $L+P \xrightarrow{k_a} LP$  and  $LP \xrightarrow{k_d} L+P$ .
- Thus, equilibrium is when

$$\frac{d[L]}{dt} = -k_a \cdot [L] \cdot [P] + k_d \cdot [LP] = 0.$$

- So,  $k_a \cdot [L] \cdot [P] = k_d \cdot [LP]$  and  $[LP] = \frac{k_a}{k_d} \cdot [L] \cdot [P]$ .
- Here,  $[P] + [LP] = \left(1 + \frac{k_a}{k_d} \cdot [L]\right) \cdot [P]$ , hence

$$\theta = \frac{[LP]}{[P] + [LP]} = \frac{\frac{k_a}{k_d} \cdot [L]}{1 + \frac{k_a}{k_d} \cdot [L]}.$$

Molecular Binding in . . .

Hill's Equation: . . .
Chemical Kinetics: . . .

Chemical Kinetics and . . .

Chemical Kinetics and . . .

Towards . . .

Mathematical Analysis

Conclusions

Home Page

Generalized . . .

Title Page





Page 5 of 11

Page

Go Back

Full Screen

Class

Close

• Reminder: chemical kinetics implies that

$$\theta = \frac{\frac{k_a}{k_d} \cdot [L]}{1 + \frac{k_a}{k_d} \cdot [L]}.$$

- Multiplying both numerator and denominator by  $K_d \stackrel{\text{def}}{=} \frac{k_d}{k_a}$ , we get  $\theta = \frac{[L]}{K_d + [L]}$ .
- This is Hill's equation for n = 1.
- Reactions like  $L + 2P \rightarrow LP + P$  can explain n = 2 and other cases when n is integer.
- In practice, we often observe non-integer values n.
- Such values are difficult to explain by chemical kinetics.

Molecular Binding in . . .

Hill's Equation: . . .

Chemical Kinetics: . . .

nemical Rinetics. .

Chemical Kinetics and . .

Towards...

Chemical Kinetics and . . .

Mathematical Analysis

Generalized . . .

Conclusions

Home Page
Title Page

**>** 



•

Page 6 of 11

Go Back

Full Screen

-ull Screen

Close

#### 6. Towards Generalization of Chemical Kinetics

- In the traditional chemical kinetics, the rate r of the reaction  $A + B \to C$  is  $r = \text{const} \cdot [A] \cdot [B]$ .
- This formula only explains the  $n = 1, 2, \dots$  cases.
- To explain the general case of Hill's equation, we need to consider a more general formula r = f([A], [B]).
- Idea: the numerical value of a quantity depends on the choice of a measuring unit; e.g., 2 m = 200 cm.
- If we replace a unit for [A] by a  $\lambda_A$  times smaller one, we get a new numerical value  $[A]' = \lambda_A \cdot [A]$ .
- Similarly, for B, we get  $[B]' = \lambda_B \cdot [B]$ .
- It makes sense to require that the dependence is the same in the new unit if we appropriately re-scale r.
- So, for every  $\lambda_A > 0$  and  $\lambda_B > 0$ , there exists a  $\mu$  s.t. if r = f([A], [B]), then  $\mu(\lambda_A, \lambda_B) \cdot r = f(\lambda_A \cdot [A], \lambda_B \cdot [B])$ .

Hill's Equation: . . . Chemical Kinetics: . . . Chemical Kinetics and . . Chemical Kinetics and . . Towards . . . Mathematical Analysis Generalized . . . Conclusions Home Page Title Page **>>** Page 7 of 11 Go Back Full Screen Close Quit

Molecular Binding in . . .

- Reminder: the dependence f([A], [B]) is such that for every  $\lambda_A$  and  $\lambda_B$ , there exists a  $\mu$  for which:
  - if r = f([A], [B]) then r' = f([A]', [B]')
  - where  $[A]' = \lambda_A \cdot [A]$ ,  $[B]' = \lambda_B \cdot [B]$ , and  $r' = \mu \cdot r$ .
- In math. terms:  $f(\lambda_A \cdot x, \lambda_B \cdot y) = \mu(\lambda_A, \lambda_B) \cdot f(x, y)$ .
- Natural assumption: f([A], [B]) is differentiable.
- For  $\lambda_B = 1$ , diff. w.r.t  $\lambda_A$  and taking  $\lambda_A = 1$ , we get  $x \cdot f'(x, y) = \alpha \cdot f(x, y)$ , i.e.,  $x \cdot \frac{df}{dx} = \alpha \cdot f$ ,  $w/\alpha \stackrel{\text{def}}{=} \mu'(1)$ .
- Separating the variables, we get  $\frac{df}{f} = \alpha \cdot \frac{dx}{x}$ .
- Integrating, we get  $\ln(f(x,y)) = \alpha \cdot \ln(x) + c_1(y)$ , so  $f(x,y) = \exp(\ln(f(x,y))) = c_2(y) \cdot x^{\alpha}$ ,  $w/c_2 = \exp(c_1)$ .
- Similarly,  $f(x,y) = c_3(x) \cdot y^{\beta}$ , so  $c_2(y) = \text{const} \cdot y^{\beta}$  and  $f(x,y) = \text{const} \cdot x^{\alpha} \cdot y^{\beta}$ .

Molecular Binding in . . .

Hill's Equation: . . .

Chemical Kinetics: . . .

Chemical Kinetics and . . .

Chemical Kinetics and . .

Towards . . .

Mathematical Analysis .

Generalized . . .
Conclusions

Home Page

Title Page





Page 8 of 11

Go Back

Full Screen

CI

Close

- Reminder: for  $A + B \to C$ , the rate is  $k_a \cdot [A]^{\alpha} \cdot [B]^{\beta}$ .
- Similarly: for  $C \to A + B$ , the scale-invariant reaction rate is  $f([C]) = k_d \cdot [C]^{\gamma}$ . Thus, equilibrium is when  $\frac{d[L]}{dt} = -k_a \cdot [L]^{\alpha} \cdot [P]^{\beta} + k_d \cdot [LP]^{\gamma} = 0.$

• So, 
$$\frac{k_a}{k_d} \cdot [L]^{\alpha} \cdot [P]^{\beta} = [LP]^{\gamma}$$
 and  $[LP] = C \cdot [L]^n \cdot [P]^{\beta/\gamma}$ ,

with 
$$C = \left(\frac{k_a}{k_d}\right)^{1/\gamma}$$
 and  $n = \alpha/\gamma$ .

• When  $\beta = \gamma$ , we have  $[P] + [LP] = (1 + C \cdot [L]^n) \cdot [P]$ , hence

$$\theta = \frac{[LP]}{[P] + [LP]} = \frac{C \cdot [L]^n}{1 + C \cdot [L]^n}.$$

• Dividing both numerator and denominator by C, we get Hill's equation  $\theta = \frac{[L]^n}{K_d + [L]^n}$ , with  $K_d \stackrel{\text{def}}{=} 1/C$ .

Molecular Binding in . . .

Hill's Equation: . . .

Chemical Kinetics: . . .

Chemical Kinetics and . . .

Chemical Kinetics and . .

Towards . . .

Mathematical Analysis

Generalized...

Conclusions

Home Page

Title Page





Page 9 of 11

Go F

Go Back

Full Screen

Close

Close

#### 9. Conclusions

- In biochemistry, the proportion of the bounded macromolecules is often described by Hill's eq.  $\theta = \frac{[L]^n}{K_d + [L]^n}$ .
- When n is an integer, this eq. can be explained by chem. kin., where the rate of  $A + B \to C$  is  $k \cdot [A] \cdot [B]$ .
- $\bullet$  However, in practice, n is often not an integer, and so the chemical kinetics explanation is not applicable.
- We assume that the reaction rate f([A], [B]) is scale-invariant but can be more general than the product.
- As a result, we get a family of formulas that include Hill's equation as a particular case.
- Thus, we get a theoretical explanation for Hill's equation.
- We also get a more general formula that may be useful to explain possible deviation from Hill's equation.

Hill's Equation: . . . Chemical Kinetics: . . . Chemical Kinetics and . . Chemical Kinetics and . . Towards . . . Mathematical Analysis Generalized . . . Conclusions Home Page Title Page **>>** Page 10 of 11 Go Back Full Screen Close Quit

Molecular Binding in . . .

### 10. Acknowledgments

- This work was partly supported by the National Science Foundation grant DUE-0926721
  - "UBM Institutional Undergraduate Training in Bioinformatics"
- The author is greatly thankful to his mentors:
  - Dr. Ming-Ying Leung
     Director of the Bioinformatics program,
  - Dr. Mahesh NarayanDepartment of Chemistry
  - Dr. Vladik Kreinovich
     Department of Computer Science

