Binding efficacy of different polyphenolic phytochemicals with β -Lactoglobulin and Human Serum Albumin: Implication for therapeutics against neurodegenerative diseases

Rene Duran Andres Ortiz

Departments of Chemistry & Mathematical Sciences University of Texas at El Paso El Paso, Texas 79968, USA rlduran@miners.utep.edu, aortiz19@miners.utep.edu

> supervised by Vladik Kreinovich (vladik@utep.edu) & Mahesh Narayan (narayan@utep.edu)

This work is supported in part by NSF grant DUE-0926721, NIH grant 5G12RR008124-18, ADRF, and the Undergraduate Participation in Bioinformatics Training

Introduction Curcumin EF-24 **β-Lactoglobulin** Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Page 1 of 22 Go Back Full Screen Close Quit

1. Introduction

- Nitrosative stress has recently been demonstrated as a crucial causal factor in the pathogenesis of Parkinson's (PD) and Alzheimer's (AD) diseases.
- Specifically, increased levels of NO disrupt the redox activity of protein-disulfide isomerase, a key endoplasmic reticulum-resident chaperone by S-nitroso modification of its redox-active cysteines.
- This leads to aggregation of misfolded proteins in AD and PD.

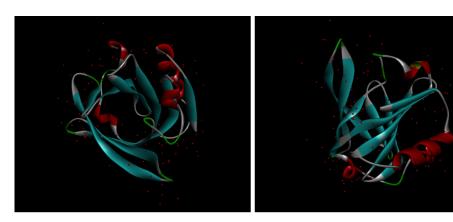
2. Curcumin

- Derivative of turmeric (Indian spice).
- Small ligand molecule.
- Well known free radical scavenger.
- Low bioavailability.

(1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (Curcumin).

Curcumin EF-24 β -Lactoglobulin Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Title Page Page 3 of 22 Go Back Full Screen Close Quit

Introduction

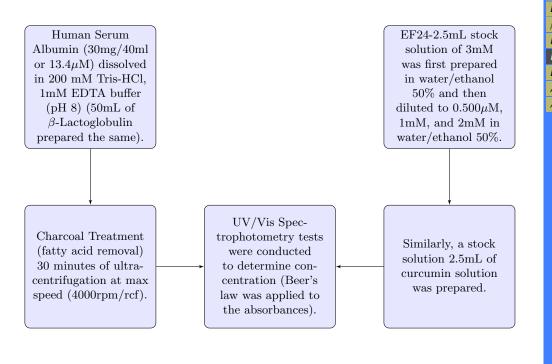

3. EF-24

- Curcumin analog.
- Small ligand molecule.
- High bioavailability.
- Potent nitrosative stress scavenger.

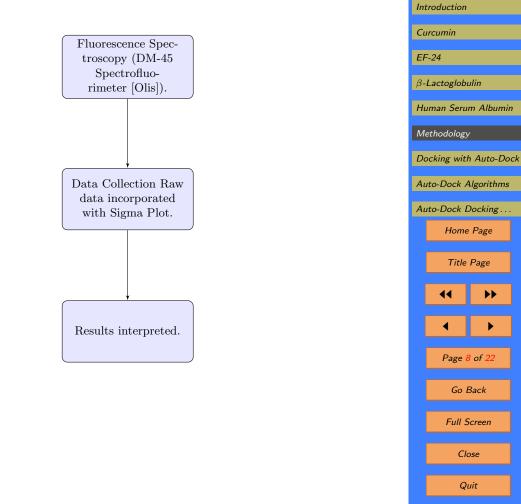
3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF-24).

4. β -Lactoglobulin

 β Lactoglobulin structure (PDB: 1B8E).



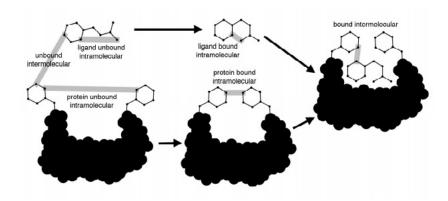
5. Human Serum Albumin



Introduction Curcumin EF-24 β -Lactoglobulin Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Title Page Page 6 of 22 Go Back Full Screen Close Quit

6. Methodology

Introduction Curcumin FF-24 β -Lactoglobulin Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Title Page **>>** Page 7 of 22 Go Back Full Screen Close Quit


Go Back

Close

Quit

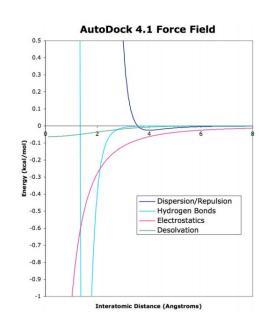
7. Docking with Auto-Dock

• Energy scoring function

$$\Delta G = (V_{bound}^{L-L} - V_{unbound}^{L-L}) + (V_{bound}^{P-P} - V_{unbound}^{P-P}) + (V_{bound}^{L-P} - V_{unbound}^{L-P} + \Delta S_{conf}).$$

Introduction Curcumin EF-24 β -Lactoglobulin Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Title Page Page 9 of 22 Go Back Full Screen Close

Quit


- Semi-empirical force field

$$V = W_{vdw} \sum_{i,j} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}} \right)$$

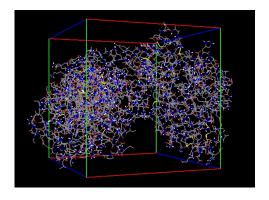
$$+W_{hbond} \sum_{i,j} E(t) \left(\frac{C_{ij}}{r_{ij}^{12}} - \frac{C_{ij}}{r_{ij}^{10}} \right)$$

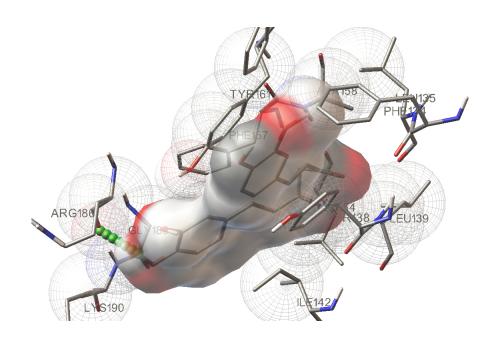
$$+W_{elec} \sum_{i,j} \frac{q_{i}q_{j}}{\epsilon(r_{ij})r_{ij}}$$

$$+W_{sol} \sum_{i,j} (S_{i}V_{j} + S_{j}V_{i})e^{-r_{ij}^{2}/2\sigma^{2}}.$$

8. Auto-Dock Algorithms

- Algorithms
 - Simulated annealing
 - Local search
 - Genetic algorithm
 - Lamarckian algorithm.




9. Auto-Dock Docking Procedure

- Obtaining PDB files for protein and ligand.
- Preparing protein file
 - Deleting waters and extra atoms
 - Adding hydrogens.

- Preparing ligand
 - Specifying rotatable bonds.
- Specifying flexible resides (if known).
- Grid parameters.
- Docking parameters.

Introduction

Curcumin

EF-24

 β -Lactoglobulin

Human Serum Albumin

Methodology

Docking with Auto-Dock

Auto-Dock Algorithms

Auto-Dock Docking...

Home Page

Title Page

_

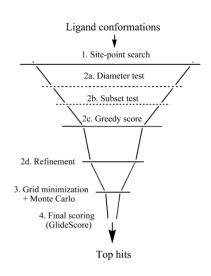
Page 13 of 22

Go Back

Full Screen

Close

Quit


10. Docking with Glide

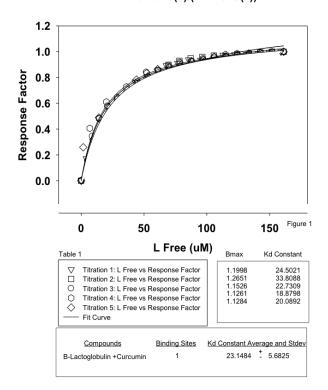
- Energy scoring function (Chemscore)
 - Empirically based

$$\Delta G_{bind} = C_0 + C_{lipo} \sum f(r_{lr})$$

$$+ C_{hbond} \sum g(\Delta r) h(\Delta \alpha) + C_{metal} \sum f(r_{lm}) + C_{rotb} H_{rot}.$$

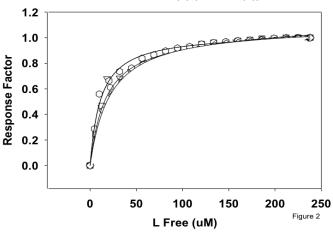
- Docking algorithm
 - Conformation generation
 - Initial screening of ligand poses
 - Energy minimization using molecular mechanics scoring function.

Introduction Curcumin EF-24 **β-Lactoglobulin** Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Title Page Page 14 of 22 Go Back Full Screen Close Quit


11. Glide docking procedure

- Importing PDB file.
- Preparing protein (Protein preparation wizard).
- Preparing ligands (LigPrep).
- Grid parameters.
- Docking parameters.

Introduction Curcumin EF-24 β -Lactoglobulin Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Title Page Page 15 of 22 Go Back Full Screen Close Quit


12. Results to Date

Overlapping of 1st Curcumin Titration Experiment f = Bmax*abs(x)/(Kd + abs(x))

Introduction Curcumin EF-24 β -Lactoglobulin Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Title Page Page 16 of 22 Go Back Full Screen Close Quit

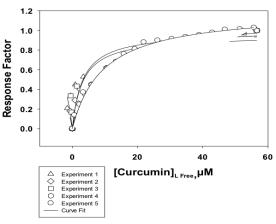
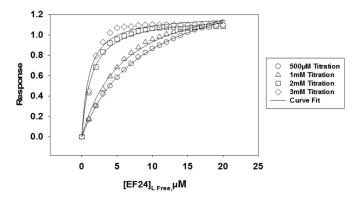

Overlapping of 2nd Curcumin Titration Experiment f = Bmax*abs(x)/(Kd+abs(x))

Table 2		_	Bmax	Kd Constant
			1.0558 1.1008 1.1358 1.0375 1.1181	17.2569 21.6957 27.0992 11.5490 28.0947
Compounds B-lactoglobulin + Curcumin	Binding Sites	K	d Constant Averaç	ge and Stdev 6.9147

Introduction Curcumin EF-24 β -Lactoglobulin Human Serum Albumin Methodology Docking with Auto-Dock Auto-Dock Algorithms Auto-Dock Docking . . . Home Page Title Page Page 17 of 22 Go Back Full Screen Close Quit

Experiment 1-5 Overlapped 1.5 mM Curcumin and 31.4 µM Human Serum Albumin f = Bmax*abs(x)/(Kd + abs(x))


Table 1. Dissociation constant and summary of binding stoichiometries for the interaction of EF 24 and Human Serum Albumin.

Interaction of Curcumin with	Binding Sites	Kd (µM)	Stoichiometry
Human Serum Albumin	9		
Experiment 1		3.2275	0.9873
Experiment 2		5.2960	1.0322
Experiment 3		3.1613	0.9480
Experiment 4		9.1486	1.1307
Experiment 5		9.4717	1.2018

^aConditions were 200 mM Tris-HCl, pH 8, 25°C

500μM, 1mM, 2mM, and 3mM EF24 Titrations Overlapped f = Bmax*abs(x)/(Kd + abs(x))

Table 1. Dissociation constant and summary of binding stoichiometries for the interaction of EF 24 and Human Serum Albumin.

Interaction of EF 24 with	Binding Sites	<u>Kd</u> (µM)	Stoichiometry
Human Serum Albumin	9		
500μM		1.27 + 0.63	1.67 + 0.21
1mM		1.37 + 0.45	1.47 + 0.14
2mM		6.26 + 0.14	1.18 + 0.03
3mM		7.48 + 0.49	1.19 + 0.07

⁸ Conditions were 200 mM Tris-HCl, pH 8, 25°C

13. Conclusions

- By conducting extensive spectrofluorimetry experiments, we have determined the binding efficacy of curcumin to β -Lactoglobulin and curcumin to human serum albumin, which is formidable.
- Similarly, the same spectrofluorimeter experiments were carried out and we have determined that the binding efficacy of this EF-24 to β -Lactoglobulin and human serum albumin is exceptional.
- Using docking results on binding affinities we will be able to reproduce a binding curve and validate by comparing to experimental results.

14. References

- Pal, R., Miranda, M., Narayan, M. Nitrosative stress-induced Parkinsonian Lewy-like aggregates prevented through polyphenolic phytochemical analog intervention. Biochemical and biophysical research communications. 2011 Jan 7;404(1): 324-9
- Anand, P., Kunnumakkara, A., Newman, R., Aggarwal, B., Bioavailability of Curcumin: Problems and Promises. Mol. Pharmaceutics, 2007, 4 (6), 807-818
- Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639-1662. John Wiley & Sons, Inc.
- Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., et al. (2012). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem., Journal of Medicinal Chemistry, 47(7), 1739-1749

15. Acknowledgements

- This work is supported in part by:
 - NSF grant DUE-0926721
 - NIH grant 5G12RR008124-18
 - Alzheimer's Disease Research Fund
 - Undergraduate Participation in Bioinformatics Training.
- The authors are greatly thankful to their mentors:
 - Dr. Ming-Ying Leung
 Director of the Bioinformatics Program,
 - Dr. Mahesh Narayan
 Department of Chemistry,
 - Dr. Vladik Kreinovich
 Department of Computer Science.

