Towards Model Fusion in Geophysics: How to Estimate Accuracy of Different Models

Omar Ochoa, Aaron Velasco, Christian Servin, and Vladik Kreinovich

> Cyber-ShARE Center University of Texas at El Paso El Paso, TX 79968, USA

omar@miners.utep.edu, aavelasco@utep.edu christians@utep.edu, vladik@utep.edu

- One of the main objectives of geophysics: find the density $\rho(x, y, z)$ at different depths z and locations (x, y).
- There exist several methods for estimating the density:
 - we can use seismic data,
 - we can use gravity measurements.
- \bullet Each of the techniques for estimating ρ has its own advantages and limitations.
- Example: seismic measurements often lead to a more accurate value of ρ than gravity measurements.
- However, seismic measurements mostly provide information about the areas above the Moho surface.
- It is desirable to combine ("fuse") the models obtained from different types of measurements into a single model.

Need to Fuse Models: . . . Fusion: General Problem Motivation for Using . . Statistical Fusion: Traditional Methods . . . How to Estimate... How to Estimate... An Idea of How to . . . Resulting Algorithm Home Page Title Page **>>** Page 2 of 15 Go Back Full Screen Close Quit

2. Fusion: General Problem

- Similar situations are frequent in practice:
 - we are interested in the value of a quantity, and
 - we have reached the limit of the accuracy achievable by using a single measuring instrument.
- Objective: to further increase the estimation accuracy.
- *Idea:* perform several measurements of the desired quantity x_i .
- Comment: we may use the same measuring instrument or different measuring instruments.
- Then, we combine the results $x_{i1}, x_{i2}, \ldots, x_{im}$ of these measurement into a single more accurate estimate \widehat{x}_i .

3. Motivation for Using Normal Distributions

- The need for fusion comes when we have extracted all possible accuracy from each measurements.
- This means, in particular, that we have found and eliminated the systematic errors.
- Thus, the resulting measurement error has 0 mean.
- It also means that that we have found and eliminated the major sources of the random error.
- Since all big error components are eliminated, what is left is the large number of small error components.
- According to the Central Limit Theorem, the distribution is approximately normal.
- Thus, it is natural to assume that each measurement error $\Delta x_{ij} \stackrel{\text{def}}{=} x_{ij} x_i$ is normally distributed.

• Each measurement error is normally distributed:

$$\rho_{ij}(x_{ij}) = \frac{1}{\sqrt{2\pi} \cdot \sigma_j} \cdot \exp\left(-\frac{(x_{ij} - x_i)^2}{2\sigma_j^2}\right).$$

• It is reasonable to assume that measurement errors corr. to different measurements are independent, so

$$L = \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi} \cdot \sigma_j} \cdot \exp\left(-\frac{(x_{ij} - x_i)^2}{2\sigma_j^2}\right).$$

• According to the Maximum Likelihood Principle, we select most probable value x_i s.t. $L \to \max$:

select most probable value
$$x_i$$
 s.t. $L \to \max$:
$$x_i = \frac{\sum_{j=1}^m \sigma_j^{-2} \cdot x_{ij}}{\sum_{j=1}^m \sigma_j^{-2}}; \text{ so, we must know the accuracies } \sigma_j.$$

Fusion: General Problem Motivation for Using . . . Statistical Fusion: . . . Traditional Methods... How to Estimate... How to Estimate... An Idea of How to . . . Resulting Algorithm Home Page Title Page **>>** Page 5 of 15 Go Back Full Screen

Close

Quit

Need to Fuse Models: . .

5. Traditional Methods of Estimating Accuracy Cannot Be Directly Used in Geophysics

- Calibration is possible when we have a "standard" (several times more accurate) measuring instrument (MI).
- In geophysics, seismic (and other) methods are state-of-the-art.
- No method leads to more accurate determination of the densities.
- In some practical situations, we can use two similar MIs to measure the same quantities x_i .
- In geophysics, we want to estimate the accuracy of a model, e.g., a seismic model, a gravity-based model.
- In this situation, we do not have two similar applications of the same model.

6. Maximum Likelihood (ML) Approach Cannot Be Applied to Estimate Model Accuracy

- We have several quantities with (unknown) actual values $x_1, \ldots, x_i, \ldots, x_n$.
- We have several measuring instruments (or geophysical methods) with (unknown) accuracies $\sigma_1, \ldots, \sigma_m$.
- We know the results x_{ij} of measuring the *i*-th quantity x_i by using the *j*-th measuring instrument.
- At first glance, a reasonable idea is to find all the unknown quantities x_i and σ_j from ML:

$$L = \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi} \cdot \sigma_j} \cdot \exp\left(-\frac{(x_{ij} - x_i)^2}{2\sigma_j^2}\right) \to \max.$$

- Fact: the largest value $L = \infty$ is attained when, for some j_0 , we have $\sigma_{j_0} = 0$ and $x_i = x_{ij_0}$ for all i.
- \bullet Problem: this is not physically reasonable.

Fusion: General Problem Motivation for Using . . Statistical Fusion: . . . Traditional Methods . . . How to Estimate... How to Estimate . . . An Idea of How to . . . Resulting Algorithm Home Page Title Page **>>** Page 7 of 15 Go Back Full Screen Close Quit

Need to Fuse Models: . .

- For every two models, the difference $x_{ij} x_{ik} =$ $\Delta x_{ij} - \Delta x_{ik}$ is normally distributed, w/variance $\sigma_i^2 + \sigma_k^2$.
- We can thus estimate $\sigma_i^2 + \sigma_k^2$ as

$$\sigma_j^2 + \sigma_k^2 \approx A_{jk} \stackrel{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^n (x_{ij} - x_{ik})^2.$$

- So, $\sigma_1^2 + \sigma_2^2 \approx A_{12}$, $\sigma_1^2 + \sigma_3^2 \approx A_{13}$, and $\sigma_2^2 + \sigma_3^2 \approx A_{23}$.
- By adding all three equalities and dividing the result by two, we get $\sigma_1^2 + \sigma_2^2 + \sigma_3^2 = \frac{A_{12} + A_{13} + A_{23}}{2}$.
- Subtracting, from this formula, the expression for $\sigma_2^2 + \sigma_3^2$, we get $\sigma_1^2 \approx \frac{A_{12} + A_{13} - A_{23}}{2}$.
- Similarly, $\sigma_2^2 \approx \frac{A_{12} + A_{23} A_{13}}{2}$ and $\sigma_3^2 \approx \frac{A_{13} + A_{23} A_{12}}{2}$.

Need to Fuse Models: . . Fusion: General Problem

Motivation for Using . .

Statistical Fusion: . . .

Traditional Methods . . .

How to Estimate . . .

How to Estimate...

An Idea of How to . . .

Resulting Algorithm Home Page

Title Page

Page 8 of 15

Go Back

Full Screen

Close

8. How to Estimate Model Accuracy: General Case and Challenge

- General case: we may have $M \geq 3$ different models.
- Then, we have $\frac{M \cdot (M-1)}{2}$ different equations $\sigma_j^2 + \sigma_k^2 \approx A_{jk}$ to determine M unknowns σ_j^2 .
- When M > 3, we have more equations than unknowns,
- So, we can use the Least Squares method to estimate the desired values σ_i^2 .
- Challenge: the formulas $\sigma_1^2 \approx \widetilde{V}_1 \stackrel{\text{def}}{=} \frac{A_{12} + A_{13} A_{23}}{2}$ are approximate.
- Sometimes, these formulas lead to physically meaningless negative values \widetilde{V}_1 .
- It is therefore necessary to modify the above formulas, to avoid negative values.

Fusion: General Problem Motivation for Using . . Statistical Fusion: . . . Traditional Methods... How to Estimate... How to Estimate... An Idea of How to . . . Resulting Algorithm Home Page Title Page **>>** Page 9 of 15 Go Back Full Screen Close Quit

Need to Fuse Models: . .

An Idea of How to Deal With This Challenge

- The negativity challenge is caused by the fact that the estimates V_i for σ_i^2 are approximate.
- For large n, the difference $\Delta V_i \stackrel{\text{def}}{=} \widetilde{V}_i \sigma_i^2$ is asymptotically normally distributed, with asympt. 0 mean.
- We can estimate the standard deviation Δ_i for this difference.
- Thus, $\sigma_i^2 = V_j \Delta V_j$ is normally distributed with mean V_i and standard deviation Δ_i .
- We also know that $\sigma_i^2 \geq 0$.
- As an estimate for σ_j^2 , it is therefore reasonable to use a conditional expected value $E\left(\widetilde{V}_j - \Delta V_j \mid \widetilde{V}_j - \Delta V_j \geq 0\right)$.
- This new estimate is an expected value of a non-negative number and thus, cannot be negative.

Need to Fuse Models: . . Fusion: General Problem

Motivation for Using . .

Statistical Fusion: . . . Traditional Methods...

How to Estimate...

How to Estimate...

An Idea of How to . . .

Resulting Algorithm

Home Page

Title Page

>>

Page 10 of 15

Go Back

Full Screen

Close

- Based on the values $x_{ij} = x_i + \Delta x_{ij}$, where the st. dev. of Δx_{ij} is σ_j^2 , we compute $A_{jk} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{ij} x_{ik})^2$.
- Then, we compute $\widetilde{V}_j = \frac{A_{jk} + A_{j\ell} A_{k\ell}}{2}$.
- For $\Delta_j^2 = E\left[\left(\widetilde{V}_j \sigma_j^2\right)^2\right]$, we get the value $\Delta_j^2 = \frac{1}{n} \cdot (2\sigma_j^4 + \sigma_j^2 \cdot \sigma_k^2 + \sigma_j^2 \cdot \sigma_\ell^2 + \sigma_k^2 \cdot \sigma_\ell^2).$
- We do not know the exact values σ_j^2 , but we do no know the estimates \widetilde{V}_j for these values.
- ullet Thus, we can estimate Δ_j as follows:

$$\Delta_j^2 \approx \frac{1}{n} \cdot \left(\left(\widetilde{V}_j \right)^2 + \widetilde{V}_j \cdot \widetilde{V}_k + \widetilde{V}_j \cdot \widetilde{V}_\ell + \widetilde{V}_k \cdot \widetilde{V}_\ell \right).$$

Need to Fuse Models: . . .

Fusion: General Problem

Motivation for Using...

Statistical Fusion: . . .

Traditional Methods...

How to Estimate...

An Idea of How to...

Resulting Algorithm

Home Page
Title Page

Page 11 of 15

Go Back

Full Screen

Close

11. Derivation of the Corr. Formulas (cont-d)

- We want to estimate $E\left(\widetilde{V}_j \Delta V_j \mid \widetilde{V}_j \Delta V_j \geq 0\right)$.
- The Gaussian variable ΔV_j has 0 mean and standard deviation Δ_j .
- Thus, ΔV_j can be represented as $t \cdot \Delta_j$, where t is a Gaussian random variable with 0 mean and st. dev. 1.
- In terms of the new variable t, the non-negativity condition $\widetilde{V}_j \Delta V_j \geq 0$ takes the form $t \leq \delta_j \stackrel{\text{def}}{=} \frac{\widetilde{V}_j}{\Lambda_j}$.
- So, the desired conditional mean is equal to

$$E\left(\widetilde{V}_{j} - \Delta_{j} \cdot t \mid t \leq \delta_{j}\right) = \widetilde{V}_{j} + \frac{\Delta_{j}}{\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\delta_{j}^{2}}{2}\right)}{\Phi(\delta_{j})}.$$

Need to Fuse Models: . . .

Fusion: General Problem

Motivation for Using...

Statistical Fusion:...

Traditional Methods...

How to Estimate...

How to Estimate...

An Idea of How to...

Resulting Algorithm

Home Page
Title Page

←

Page 12 of 15

Go Back

Full Screen

Close

- Input: for each value x_i (i = 1, ..., n), we have three estimates x_{i1} , x_{i2} , and x_{i3} corr. to three diff. models.
- Objective: to estimate the accuracies σ_j^2 of these three models.
- First, for each $j \neq k$, we compute

$$A_{jk} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{ij} - x_{ik})^2.$$

• Then, we compute

$$\widetilde{V}_1 = \frac{A_{12} + A_{13} - A_{23}}{2}; \quad \widetilde{V}_2 = \frac{A_{12} + A_{23} - A_{13}}{2};$$

$$\widetilde{V}_3 = \frac{A_{13} + A_{23} - A_{12}}{2}.$$

 \bullet After that, for each j, we compute

$$\Delta_j^2 = \frac{1}{n} \cdot \left(\left(\widetilde{V}_j \right)^2 + \widetilde{V}_j \cdot \widetilde{V}_k + \widetilde{V}_j \cdot \widetilde{V}_\ell + \widetilde{V}_k \cdot \widetilde{V}_\ell \right).$$

Need to Fuse Models: . . .

Fusion: General Problem

Motivation for Using . . .

Statistical Fusion:...

Traditional Methods...

How to Estimate...

How to Estimate...

An Idea of How to...

Resulting Algorithm

Home Page

Title Page

Page 13 of 15

Go Back

Full Screen

Class

Close

$$\Delta_j^2 = \frac{1}{n} \cdot \left(\left(\widetilde{V}_j \right)^2 + \widetilde{V}_j \cdot \widetilde{V}_k + \widetilde{V}_j \cdot \widetilde{V}_\ell + \widetilde{V}_k \cdot \widetilde{V}_\ell \right).$$

- Then, we compute the auxiliary ratios $\delta_j = \frac{\hat{V}_j}{\Lambda}$.
- Finally, we return as an estimate σ_i^2 for σ_i^2 , the value

$$\widetilde{\sigma_j^2} = \widetilde{V}_j + \frac{\Delta_j}{\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\delta_j^2}{2}\right)}{\Phi(\delta_j)}.$$

• These non-negative estimates $\widetilde{\sigma_i^2}$ can now be used to fuse the models: for each i, we take $x_i = \frac{\sum \widetilde{\sigma}_j^{-2} \cdot x_{ij}}{\sum \widetilde{\sigma}_j^{-2}}$.

Need to Fuse Models: . . Fusion: General Problem

Motivation for Using . .

Statistical Fusion: . . . Traditional Methods...

How to Estimate...

How to Estimate...

An Idea of How to . . .

Resulting Algorithm

Home Page Title Page

Go Back

Full Screen

Close

14. Acknowledgments

This work was supported in part by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence).

Need to Fuse Models: . . Fusion: General Problem Motivation for Using . . . Statistical Fusion: Traditional Methods... How to Estimate... How to Estimate... An Idea of How to . . . Resulting Algorithm Home Page Title Page 44 Page 15 of 15 Go Back Full Screen Close