Derivation of Gross-Pitaevskii Version of Nonlinear Schroedinger Equation from Scale Invariance

Olga Kosheleva and Vladik Kreinovich

University of Texas at El Paso 500 W. University El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu Schroedinger's . . . Scale Invariance What We Do Analysis of the Problem What Is a Lagrange . . . What Does Scale ... When Is L. Scale-Invariant Main Results: Proof Home Page **>>** Page 1 of 23 Go Back Full Screen Close Quit

• The observational meaning: for each spatial region Ω , the probability P to find the particle in Ω is

$$P = \int_{\Omega} |\psi(x,t)|^2 \, \mathrm{d}x.$$

• The non-relativistic dynamics of the wave function is described by the Schroedinger equation

$$\mathbf{i} \cdot \hbar \cdot \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \cdot \nabla^2 \psi + V(x, t) \cdot \psi(x, t).$$

• This equation can be derived from the minimum action principle $S \stackrel{\text{def}}{=} \int L(x,t) dx dt \to \min$, where

$$L = i \cdot \hbar \cdot \left(\psi \cdot \frac{\partial \psi^*}{\partial t} - \psi^* \cdot \frac{\partial \psi}{\partial t} \right) + \frac{\hbar^2}{2m} \cdot (\nabla \psi \cdot \nabla \psi^*) - V \cdot \psi \cdot \psi^*.$$

Scale Invariance

What We Do

Analysis of the Problem

What Is a Lagrange...

When Is L Scale-Invariant

What Does Scale...

vviiat Does c

Main Results: . . .

Proof

Home Page

Title Page

Go Back

_ .. _

Full Screen

Close

2. Scale Invariance

- In modern physics, the notions of symmetry play a fundamental role; this makes perfect sense:
- The main purpose of science is to make predictions.
- The only way we can make predictions about new situations in when we find some similarity (symmetry) between
 - the new situations and
 - situations that have been previously observed and for which we know what happened.
- One of the simplest symmetries comes from the fact that:
 - while physical equations deal with the numerical values of the physical quantities,
 - these numerical values depend on the choice of the corresponding measuring units.

3. Scale Invariance (cont-d)

- In general:
 - If we use a new measuring unit which is λ times smaller than the previously used one,
 - then all the numerical values of the corresponding quantity get multiplied by λ : $x \to x' = \lambda \cdot x$.
- For example, if we replace 1 m with 1 cm as the unit of length, then instead of 2 m, we get $200 \cdot 2 = 200$ cm.
- It is reasonable to require that:
 - the fundamental physical equations should not change
 - if we simply re-scale the numerical values by changing the measuring units.
- Many fundamental physical equations can be derived from scale-invariance, including Schroedinger's.

- The above derivations deal with the usual 4dimensional space-time.
- However, according to modern physics, the actual dimension D of proper space may be different from 3.
- We show that for dimensions $D \geq 3$, we still get only the Schroedinger equation.
- For D=2, we also get the Gross-Pitayevsky equation that describes a quantum system of identical bosons:

$$\mathbf{i} \cdot \hbar \cdot \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \cdot \nabla^2 \psi + V(x,t) \cdot \psi(x,t) + \frac{c}{m} \cdot |\psi|^2 \cdot \psi$$

• This equation corresponds to the Lagrange function

$$L = i \cdot \hbar \cdot \left(\psi \cdot \frac{\partial \psi^*}{\partial t} - \psi^* \cdot \frac{\partial \psi}{\partial t} \right) + \frac{\hbar^2}{2m} \cdot (\nabla \psi \cdot \nabla \psi^*) - V \cdot \psi \cdot \psi^* + \frac{f}{m} \cdot |\psi|^4.$$

Scale Invariance

What We Do

Schroedinger's . . .

Analysis of the Problem

What Is a Lagrange . . .

What Does Scale . . .

When Is L Scale-Invariant

Main Results: . . .

Proof

Home Page

Title Page

Page 5 of 23

Go Back

Full Screen

Close

5. What We Do (cont-d)

 \bullet For D=1, we also get a new nonlinear version of the Schroedinger's equation

$$\mathbf{i} \cdot \hbar \cdot \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \cdot \nabla^2 \psi + V(x,t) \cdot \psi(x,t) + \frac{c}{m} \cdot |\psi|^4 \cdot \psi.$$

• This equation corresponds to the Lagrange function

$$L = \mathbf{i} \cdot \hbar \cdot \left(\psi \cdot \frac{\partial \psi^*}{\partial t} - \psi^* \cdot \frac{\partial \psi}{\partial t} \right) + \frac{\hbar^2}{2m} \cdot (\nabla \psi \cdot \nabla \psi^*) - V \cdot \psi \cdot \psi^* + \frac{f}{m} \cdot |\psi|^6.$$

Scale Invariance What We Do Analysis of the Problem What Is a Lagrange . . . What Does Scale . . . When Is L Scale-Invariant Main Results: . . . Proof Home Page Title Page **>>** Page 6 of 23 Go Back Full Screen Close Quit

Schroedinger's . . .

6. Analysis of the Problem

- We want to obtain a Lagrange function describing the dynamics of a particle
 - of mass m,
 - described by a (complex-valued) wave function $\psi(x,t)$,
 - in a field with a potential energy function V(x,t).
- Since the Lagrange function must be real-valued, it can also depend on the complex conjugate values $\psi^*(x,t)$.
- This Lagrange function should be rotation-invariant.
- Also, in quantum mechanics:
 - we can add a constant phase to all the values of $\psi(x,t)$
 - without changing the physical meaning.

7. Analysis of the Problem (cont-d)

• Thus, the Lagrange function should be *phase-invariant*, i.e., invariant with respect

$$\psi(x,t) \to \exp(i \cdot \alpha) \cdot \psi(x,t).$$

- In general, a Lagrange function depends both on the fields and on their derivatives.
- Let us, as usual, denote the time derivative by ψ , and the derivative with respect to x_k by $\psi_{,k}$.

8. What Is a Lagrange function L for Non-Relativistic Quantum Mechanics: Definition

- By L, we mean a phase-invariant rotation-invariant real-valued analytical function of:
 - the mass m and its inverse m^{-1} , and
 - fields $\psi(x,t)$, $\psi^*(x,t)$, and V(x,t), and their derivatives of arbitrary orders w.r.t. t and x_i :

$$L(m, m^{-1}, \psi(x, t), \psi_{,k}(x, t), \dot{\psi}(x, t), \dots, \psi^{*}(x, t), \psi^{*}_{,k}(x, t), \dot{\psi}^{*}(x, t), \dots, V(x, t), V_{,k}(x, t), \dot{V}(x, t), \dots)$$

9. What Does Scale Invariance Mean

- We can change the unit for space $x^i \to x'^i = \lambda \cdot x^i$ and a unit of time $t \to t' = \mu \cdot t$.
- How do L, $\psi(x,t)$, and V(x,t) change under these transformations?
- In quantum measurements, simple experiments enable us to obtain a unit of action \hbar .
- Therefore action $S = \int L(x,t) dx dt$ must be invariant with respect to scale transformations.
- Hence, L(x,t) (which is action/(volume×time)) must transform as $L \to L' = \lambda^{-D} \cdot \mu^{-1} \cdot L$.
- Invariant action is energy \times time, so energy V(x,t) transforms as $V \to V' = \mu^{-1} \cdot V$.

10. What Does Scale Invariance Mean (cont-d)

- Energy is mass \times velocity².
- We know how energy is transformed and how velocity is transformed.
- Therefore, for mass, we get $m \to m' = \lambda^{-2} \cdot \mu \cdot m$.
- The transformation law for the wave function $\psi(x,t)$ can be deduced from its physical meaning.
- The integral $\int |\psi|^2 dx$ is a probability and is therefore invariant.
- So, $|\psi|^2 \sim 1/\text{length}^D$, hence, $|\psi|^2 \to \lambda^{-D} \cdot |\psi|^2$, and $\psi \to \psi' = \lambda^{-D/2} \cdot \psi$.

• If we change the units, then we get the new expression for L

 $L'(x,t) = \lambda^{-D} \cdot \mu^{-1} \cdot L(m, m^{-1}, \psi(x,t), \psi_k(x,t), \dot{\psi}(x,t), \dots,$

 $\psi^*(x,t), \psi^*_k(x,t), \dot{\psi}^*(x,t), \dots, V(x,t), V_{k}(x,t), \dot{V}(x,t), \dots$

• On the other hand, if we change the units in the original expression, we get

 $L(\lambda^2 \cdot \mu^{-1} \cdot m, \lambda^{-2} \cdot \mu \cdot m^{-1}, \lambda^{-D/2} \cdot \psi, \lambda^{-D/2-1} \cdot \psi_k, \lambda^{-D/2} \cdot \mu \cdot \dot{\psi}, \dots,$ $\lambda^{-D/2} \cdot \psi^*, \lambda^{-D/2-1} \cdot \psi_{.k}^*, \lambda^{-D/2} \cdot \mu \cdot \dot{\psi}^*, \dots,$

$$\mu^{-1} \cdot V, \lambda^{-1} \cdot \mu^{-1} \cdot V_{,k}, \mu^{-2} \cdot \dot{V}, \ldots).$$

• We say that L is scale-invariant if for all $\lambda > 0$ and $\mu > 0$, these expressions coincide.

Scale Invariance What We Do

Analysis of the Problem

Schroedinger's . . .

What Is a Lagrange . . .

What Does Scale . . .

When Is L Scale-Invariant Main Results: . . .

Proof

Home Page

Title Page

>>

Page 12 of 23

Go Back

Full Screen

Close

Main Results: Formulation

- - For D > 3, every scale-invariant Lagrange function has

$$i \cdot b \cdot \left(\psi \cdot \frac{\partial \psi^*}{\partial t} - \psi^* \cdot \frac{\partial \psi}{\partial t} \right) + \frac{c}{m} \cdot (\nabla \psi \cdot \nabla \psi^*) + d \cdot V \cdot \psi \cdot \psi^* + L_0.$$

- the form
- the form

• For D = 1, every scale-invariant Lagrange function has

the form

• For D=2, every scale-invariant Lagrange function has

 $i \cdot b \cdot \left(\psi \cdot \frac{\partial \psi^*}{\partial t} - \psi^* \cdot \frac{\partial \psi}{\partial t} \right) + \frac{c}{m} \cdot (\nabla \psi \cdot \nabla \psi^*) + d \cdot V \cdot \psi \cdot \psi^* + \frac{f}{m} \cdot |\psi|^4 + L_0.$

 $i \cdot b \cdot \left(\psi \cdot \frac{\partial \psi^*}{\partial t} - \psi^* \cdot \frac{\partial \psi}{\partial t} \right) + \frac{c}{m} \cdot (\nabla \psi \cdot \nabla \psi^*) + d \cdot V \cdot \psi \cdot \psi^* + \frac{f}{m} \cdot |\psi|^6 + L_0.$

Page 13 of 23

Schroedinger's . . . Scale Invariance

What We Do

Analysis of the Problem

What Is a Lagrange . . . What Does Scale . . .

When Is L Scale-Invariant

Home Page

Title Page

>>

Main Results: . . .

Proof

Go Back

Full Screen

Close

- Let us consider only transformations which preserve m, i.e., transformations for which $\mu = \lambda^2$.
- For these transformations, the expression-to-coincide have the form

$$L_{1} = \lambda^{-(D+2)} \cdot L(m, m^{-1}, \psi(x, t), \psi_{,k}(x, t), \dot{\psi}(x, t), \dots, \psi^{*}(x, t), \psi_{,k}^{*}(x, t), \dot{\psi}^{*}(x, t), \psi^{*}(x, t), \dots, V(x, t), V_{,k}(x, t), \dot{V}(x, t), \dots);$$

$$L_{2} = L(m, m^{-1}, \lambda^{-D/2} \cdot \psi, \lambda^{-D/2-1} \cdot \psi_{,k}, \lambda^{-D/2-2} \cdot \dot{\psi}, \dots, \lambda^{-D/2} \cdot \psi^{*}, \lambda^{-D/2-1} \cdot \psi_{,k}^{*}, \lambda^{-D/2-2} \cdot \dot{\psi}^{*}, \dots, \lambda^{-D/2} \cdot V, \lambda^{-3} \cdot V_{,k}, \lambda^{-4} \cdot \dot{V}, \dots).$$

Scale Invariance

Schroedinger's . . .

What We Do

Analysis of the Problem

What Is a Lagrange...

What Does Scale...

When Is L Scale-Invariant

Main Results: . . .

Proof

Home Page

Title Page

>>

Page 14 of 23

Go Back

Full Screen

Close

- Since L is an analytical function, both expressions L_i are analytical in λ^{-1} .
- So, each L_i is a (possibly infinite) sum of monomials.
- So, all the coefficients at the corresponding monomials must coincide.
- All the monomials in L_1 multiply by $\lambda^{-(D+2)}$.
- Thus, in the right-hand side, we can only have the monomials which are similarly multiplied.
- Here:
 - $-\psi$ is multiplied by $\lambda^{-D/2}$,
 - -V is multiplied by λ^{-2} ,
 - spatial differentiation leads to multiplication by λ^{-1} , and
 - temporal differentiation multiplies by λ^{-1} .

Scale Invariance

Analysis of the Problem

Schroedinger's . . .

What We Do

Triat Tre Be

What Is a Lagrange...

What Does Scale...

When Is L Scale-Invariant

Main Results: . . .

Proof

Home Page

Title Page

>>

Page 15 of 23

Go Back

GO E

Full Screen

Close

Close

• Thus, we must have

$$D + 2 = \frac{D}{2} \cdot n_{\psi} + 2n_V + n_S + 2n_T,$$

where:

- $-n_{\psi}$ is the total number of terms ψ , ψ^* , and their derivatives,
- $-n_V$ is the total number of V and its derivatives,
- $-n_S$ is the total number of spatial differentiations, and
- $-d_T$ is the total number of differentiations with respect to time.
- Terms not depending on ψ do not affect S and, thus, do not contribute to the equations.
- Thus, we must have $n_{\psi} \geq 1$.

Scale Invariance

Schroedinger's . . .

What We Do

Analysis of the Problem

When Is L Scale-Invariant

What Is a Lagrange...

What Does Scale . . .

Main Results: . . .

Proof

Home Page

Title Page

Page 16 of 23

Go Back

Full Screen

Close

- Terms linear (or, in general, of odd order) in ψ or in its derivatives are not phase-invariant.
- So, we must have n_{ψ} even and $n_{\psi} \geq 2$, hence $n_{\psi} 2 \geq 0$, thus $2 = \frac{D}{2} \cdot (n_{\psi} - 2) + 2n_V + n_S + 2n_T$.
- For odd $D \geq 3$, since the left-hand side is an integer, the difference $n_{\psi} - 2$ must be even.
- If this difference is non-zero, then $n_{\psi}-2\geq 2$ and $(D/2) \cdot (n_{\psi} - 2) > D > 3.$
- However, we know that the sum of this product and several non-negative integers is equal to 2.
- Thus, in this case, we cannot have $n_{\psi}-2>0$, so we must have $n_{\psi} - 2 = 0$ and $n_{\psi} = 2$.
- Similarly, for even D > 2, if $n_{\psi} 2 > 0$ then $n_{\psi} 2 \ge 2$ and $(D/2) \cdot (n_{\eta} - 2) > D > 2$.

Scale Invariance

Schroedinger's . . .

What We Do

Analysis of the Problem What Is a Lagrange . . .

What Does Scale . . .

When Is L Scale-Invariant

Main Results: . . .

Proof

Home Page

Title Page

Page 17 of 23

Go Back

Full Screen

Close

- Thus, for all $D \geq 3$, we must have $n_{\psi} = 2$ and so, $2 = 2n_V + n_S + 2n_T$.
- Since all three integers n_V , n_S , and n_T are non-negative, we only have the following three options:

$$-n_V = 1, n_S = n_T = 0;$$

$$-n_V = 0, n_S = 2, n_T = 0;$$
 and

$$-n_V = 0, n_S = 0, n_T = 1.$$

- In all these cases, we have $n_{\psi} = 2$.
- In the first case, we get a product of V and two terms of type ψ and ψ^* .
- The only way to make it real-valued is to have $V \cdot \psi \cdot \psi^*$.
- Another possibility would be $V \cdot (\psi^2 + (\psi^*)^2)$, but the corresponding term is not phase-invariant.

Schroedinger's...

Scale Invariance

What We Do

Analysis of the Problem

What Is a Lagrange...

What Does Scale...
When Is L Scale-Invariant

Main Results: . . .

Proof

Home Page

Title Page

→

Page 18 of 23

Go Back

- - ·

Full Screen

Close

- In the second case, we have two derivatives of two functions ψ .
- Due to the requirement that L is real-valued, one of them must be ψ , and another one ψ^* .
- Due to rotation-invariance, we have two possibilities: $\psi_{,i} \cdot \psi_{,i}^*$ and $\psi \cdot \nabla^2 \psi^*$.
- The second term differs from the first one by a full derivative.
- So, we can assume that we get the first term, and add the full derivative to L_0 .
- In the third case, we have two functions ψ and ψ^* and one time derivative.
- This leads to the corresponding term in L.

19. Case of D = 2

• For D=2, the above equation takes the form

$$2 = (n_{\psi} - 2) + 2n_V + n_S + 2n_T.$$

- Here, in addition to the case $n_{\psi} = 2$, we can also have the case when $n_{\psi} 2 = 2$ and thus, $n_{\psi} = 4$.
- In this case, we have $n_V = n_S = n_T = 0$.
- The only phase-invariant real-valued term of fourth order in ψ and ψ^* is $(\psi \cdot \psi^*)^2 = |\psi|^4$.

20. Case of D = 1

- For D=1, we get $2=\frac{1}{2}\cdot(n_{\psi}-2)+2n_{V}+n_{S}+2n_{T}$.
- \bullet The number of spatial differentiations must be even, otherwise L is not rotation-invariant.
- Since all the terms in the above equality, except for the term $\frac{1}{2} \cdot (n_{\psi} 2)$, are even, this term must also be even.
- Thus, the only way for it to be non-zero is to be ≥ 2 .
- This term cannot be larger than 2 then we would not be able to have 2 in the left-hand side.
- Thus, we must have $(1/2) \cdot (n_{\psi} 2) = 2$, hence $n_{\psi} 2 = 4$ and $n_{\psi} = 6$ and $n_{V} = n_{S} = n_{T} = 0$.
- The only phase-invariant real-valued term of sixth order in ψ and ψ^* is the term $(\psi \cdot \psi^*)^3 = |\psi|^6$.

21. Final Part of the Proof

- We have almost proved the theorems, except for the dependence on m.
- To finalize the proof, we can take the expression that we have obtained so far,
 - explicitly mention that all the coefficients a, b, \ldots should depend on m, and
 - describe the requirement that the resulting formula be scale-invariant.
- This enables us to find the exact dependence of all the coefficients on m.
- The theorems are proven.

22. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.

