Systems Approach Explains a Mysterious Slowdown Effect in Climate Economics

Mohammad Akidul Hoque, Md. Isteak Uddin, and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
mhoque2@miners.utep.edu, muddin2@miners.utep.edu,
vladik@utep.edu
1. Mysterious slowdown effect in climate economics: a brief description

- Climate disasters – severe droughts, floods, ice storms – have a strong negative effect on the Gross Domestic Product (GDP).
- It seems reasonable to expect that:
 - once this event is over – and thus, all obstacles to economy growth are gone,
 - the economy will continue to grow at the same rate as before.
- In reality, however, for quite some time the growth remains much slower.
- Economists do not know why this happens.
- A similar slowdown can be observed after other disasters as well, e.g., after earthquakes, volcanic eruptions, etc.
- How can we explain this phenomenon?
2. Our explanation

- Let x_1, \ldots, x_n be parameters that describe the state of the economy.
- For example, x_1 is GDP, x_2 is unemployment level, etc.
- In the absence of external disruptions, the rate of change \dot{x}_i of each of these parameters depends on the current state of the economy:
 $$\dot{x}_i = f_i(x_1, \ldots, x_n).$$
- The changes in x_i are relatively small.
- In a small neighborhood, every smooth surface is well approximated by its tangent plane.
- In other words, any smooth function $f(x_1, \ldots, x_n)$ is well approximated by a linear expression.
3. Our explanation (cont-d)

- Thus, a good description of the economy is provided by the following system of linear differential equations

\[\dot{x}_i = a_i + \sum_j a_{ij} \cdot x_j. \]

- It is known that a general solution of such a system is a linear combination of the terms \(\exp(\lambda_k \cdot t) \):

\[x_i(t) = c_1 \cdot \exp(\lambda_1 \cdot t) + c_2 \cdot \exp(\lambda_2 \cdot t) + \ldots \]

- Here \(\lambda_k \) are eigenvalues of the matrix \(a_{ij} \)

- Without losing generality, we can sort the eigenvalues in decreasing order

\[\lambda_1 > \lambda_2 > \ldots \]

- The term corresponding to \(\lambda_1 \) grows the fastest.

- So after a while, the relative contributions of all other terms tend to 0, and we get \(x_i(t) \approx c_1 \cdot \exp(\lambda_1 \cdot t) \), with growth rate \(\lambda_1 \).
4. Our explanation (cont-d)

- After the disaster is over, the economy is described by the same system of equations.

- So the new solution also has the form

 \[x_i(t) = c_1 \cdot \exp(\lambda_1 \cdot t) + c_2 \cdot \exp(\lambda_2 \cdot t) + \ldots \]

- However, in this case, in general, the terms proportional to \(c_2, c_3, \) etc. can no longer be neglected.

- So, after time \(\Delta t: \)
 - while the first term in the right-hand side still get multiplied by the factor \(\exp(\lambda_1 \cdot \Delta t) \) that correspond to growth rate \(\lambda_1, \)
 - all the other terms get multiplied by smaller factors \(\exp(\lambda_2 \cdot \Delta t), \) etc.

- As a result, the overall growth rate is smaller than \(\lambda_1. \)

- This is exactly what has been observed.
5. References

6. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and
 - HRD-1834620 and HRD-2034030 (CAHSI Includes).

- It was also supported by the AT&T Fellowship in Information Technology.

- It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.