Data Fusion Is More Complex Than Data Processing: A Proof

Robert Alvarez, Salvador Ruiz, Martine Ceberio, and Vladik Kreinovich

Department of Computer Science, University of Texas at El Paso
500 W. University, El Paso, TX 79968, USA
rjalvarez@miners.utep.edu, sruiz13@miners.utep.edu
mceberio@utep.edu, vladik@utep.edu
1. **What is data processing: a brief reminder**

- In many practical situations, we are interested in the value of a quantity y that is difficult – or even impossible – to measure directly.
- For example, we may be interested in tomorrow’s temperature.
- Since we cannot measure this quantity directly, we can measure it indirectly. Namely:
 - We find easier-to-measure quantities x_1, \ldots, x_n that are related to y by a known dependence $y = f(x_1, \ldots, x_n)$.
 - Then, we measure the values x_i and apply the algorithm $f(x_1, \ldots, x_n)$ to the measurement results \tilde{x}_i.
 - This produces an estimate $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$ for y.
 - This is known as *data processing*
2. Data processing under uncertainty

- Measurements are never absolutely accurate.
- In many cases, all we know is the upper bound Δ_i on the absolute value of the measurement error $\tilde{x}_i - x_i$.
- In such cases, after the measurement, all we know is that
 \[x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]. \]
- In this case, it is desirable to find the range of all possible values of
 \[y = f(x_1, \ldots, x_n). \]
- In general, computing this range is NP-hard.
- However, there are cases when computable is feasible.
- One such case is when if $f(x_1, \ldots, x_n)$ is a Single Use Expression (SUE), in which each variable occurs only one, (e.g., $x_1 + x_2^3$).
3. What is data fusion: a brief reminder

- To describe the state of an object, we need to know the values of the physical quantities x_1, \ldots, x_m that characterize this object.
- To determine this state, we can measure all these quantities.
- Usually, the quantities are not completely independent.
- There are constraints that relate them, and these constraints can help to decrease inaccuracy.
- For example, if we know that $x_1 \in [0.9, 1.1]$, $x_2 \in [0.8, 1.0]$ and $|x_1 - x_2| \leq 0.01$, then we can conclude that $x_1 \in [0.9, 1.01]$.
- This decreasing-of-inaccuracy combination of several measurement results is known as data fusion.
4. Problem and what we do

- Empirical evidence shows that, in general, data fusion is more time-consuming than data processing.
- In this talk, we prove that data fusion is indeed more complex than data processing.
- Specifically, we prove that even if all the constraints are described by SUE expressions, data fusion is still, in general, NP-hard.
- Since for SUE, data processing is feasible, this means that data fusion is indeed more complex.
5. Proof

- Let us consider the variables $x_1, \ldots, x_n, y_1, \ldots, y_n$, and y.
- Let us assume that we only measure x_i, and that the variables are related by SUE constraints $x_i = y_i$ and $y = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} y_i\right)^2$.
- Under these constraints, the range of y is equal to the range of the sample variance $\frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} x_i\right)^2$ under interval uncertainty.
- It is known that the problem of computing this range is NP-hard.
6. References

7. Acknowledgments

This work was supported in part by:

- National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;
- AT&T Fellowship in Information Technology;
- program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and
- a grant from the Hungarian National Research, Development and Innovation Office (NRDI).