Paradox of Causality and Paradoxes of Set Theory

Alondra Baquier, Bradley Beltran, Gabriel Miki-Silva, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, 500 W. University, El Paso, Texas 79968, USA
abaquier1@miners.utep.edu, bjbeltran@miners.utep.edu,
gmikisilva@miners.utep.edu, olgak@utep.edu, vladik@utep.edu
1. Paradox of causality: reminder

- It is well known that time travel can lead to paradoxes:
 - If a person A travels to the past and kills his own grandfather before his own father was conceive,
 - there is no possibility for A to be born –
 - but he was actually born.

- In general, this paradox appears every time we close a closed loop of causality relations:
 - whether we have event e_1 causally affecting event e_2 (we will denote it by $e_1 < e_2$) and e_2 causally affecting event e_1 ($e_2 < e_1$),
 - or whether we have $e_1 < e_2$, $e_2 < e_3$, and $e_3 < e_1$,
 - or whether we have a even longer loop.
2. Paradox of intuitive ("naive") set theory

- In set theory, a known paradox – first discovered by Bertran Russell – is related:
 - to the possibility of having a simple element-of loop,
 - i.e., the possibility to have \(x \in x \) for some set \(x \).

- Specifically, the paradox appears when we consider the set \(S = \{ x : x \not\in x \} \) of all the sets that are not elements of themselves.

- The paradox appears when we check whether \(S \in S \).

- Indeed, we have either \(S \in S \) or \(S \not\in S \), and in both cases, we get a contradiction.

- if \(S \in S \), then, by definition of the set \(S \), its element \(S \) must have the property that defines this set, i.e., we must have \(S \not\in S \).

- This contradicts to our assumption that \(S \in S \);
3. Paradox of intuitive (“naive”) set theory (cont-d)

- On the other hand, if $S \not\in S$, then, by definition of the set S, the set S does not have the property that defines this set, i.e., we have $S \in S$.
- This contradicts to our assumption that $S \not\in S$.
4. Natural idea

• Both paradoxes relate to close loops; the main difference is that:
 – the causality paradox appears no matter how long is the loop, while
 – the corresponding paradox of set theory is only known to appear when we consider a one-element loop: $x \in x$.

• It is therefore reasonable to check whether a similar paradox appears in set theory when we consider loops of arbitrary length.
5. Main result

- In this talk, we show that such an extension is indeed possible.
- In other words, it is possible to formulate a similar paradox related to a loop $x \in x_1 \in x_2 \in \ldots \in x_n \in x$, for any n.
- Indeed, let us consider the set

$$S_n = \{x : \neg \exists x_1, \ldots, x_n(x \in x_1 \in x_2 \in \ldots \in x_n \in x)\}.$$

- Then, we have either $S_n \in S_n$ or $S_n \notin S_n$ – and in both cases, we get a contradiction.
- If $S_n \in S_n$, then means that we cannot have sets x_1, \ldots, x_n for which $S_n \in x_1 \in \ldots \in x_n \in S_n$.
- However, we do have such sets if we take $x_2 = \ldots = x_n = S_n$ – a contradiction.
6. Main result (cont-d)

- On the other hand, if $S_n \notin S_n$, then there should exist a sequence x_1, \ldots, x_n for which $S_n \in x_1 \in \ldots \in x_n \in S_n$.

- In particular, this means that $x_n \in S_n$.

- So, for the element x_n, we have a loop $x_n \in S_n \in x_1 \ldots \in x_{n-1} \in x_n$.

- This means, by the definition of the set S_n, that x_n cannot be the element of S_n – also a contradiction.
7. Acknowledgments

This work was supported in part by:

- National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;
- AT&T Fellowship in Information Technology;
- program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and
- a grant from the Hungarian National Research, Development and Innovation Office (NRDI).