Why burst of physical activity is good for your health: a possible explanation

Jhonny Gonzalez, Jose Gonzalez, Julio Urenda, Olga Kosheleva, and Vladik Kreinovich University of Texas at El Paso, El Paso, Texas 79968 jgonzalez183@miners.utep.edu, jvgonzalez6@miners.utep.edu, juurenda@utep.edu, olgak@utep.edu, vladik@utep.edu

1. Burst of physical activity is good for your health: empirical fact

- Recent research showed that:
 - a short burst of high physical activity
 - is good for your health.
- It has a much better effect than the same amount of activity spread over time.
- In this talk, we provide an explanation for this empirical fact.

2. Let us formulate the problem in precise terms

- Let us denote the overall amount of physical activity by D_0 .
- How we do it can be characterized by a function D(t) that describes how much activity has been done by time t.
- We start at time t = 0, when the activity-so-far is 0: D(0) = 0.
- At each moment of time, we can only add more activity.
- So this function is (non-strictly) increasing: if $t \leq t'$ then

$$D(t) \le D(t').$$

- At the end of the session, we should have $D(t) = D_0$.
- This amount should remain the same until the next session.
- The time until the next session e.g., a day is much larger than the session's duration.

3. Let us formulate the problem in precise terms (cont-d)

- Thus, it makes sense, when describing the current session:
 - to ignore this future session which is too far away from now, and
 - to simply assume that the function D(t) remains equal to D_0 for all non-negative value t.
- In these terms:
 - selecting an appropriate schedule means
 - selecting a (non-strictly) increasing function D(t) for which D(0) = 0 and $\lim_{t \to \infty} D(t) = D_0$.
- There are many such functions, which of them should we choose?
- Informally, we should select the best of these functions.
- The question is how we describe "the best" in precise terms.

4. How to describe "the best" in precise terms: general case

- Usually, "the best" means that some objective function attains the largest (or the smallest) possible value.
- However, this is not the most general way of describing optimality.
- For example:
 - if you have two different schedules that have the same health effect,
 - it is reasonable to use this non-uniqueness to optimize something else.

• In this case:

- instead of the original single objective function f(a), we have a more complicated scheme,
- when an alternative a is better than an alternative b:
 - * if either f(a) > f(b),
 - * or if f(a) = f(b) and g(a) < g(b) for some other function g(a).

5. How to describe "the best" in precise terms (cont-d)

- If this more complex scheme still selects several alternatives:
 - we can use this non-uniqueness to optimize something else, etc.,
 - until we reach the final optimality criterion in which we have only one optimal alternative.
- The only thing we can say about such more general optimization settings is that we should be able, for any two alternatives a and b, to decide:
 - whether a is better than b (we will denote it by a > b),
 - or b better than a (b > a),
 - or a and b have the same quality (we will denote it by $a \sim b$).
- These relations a > b and $a \sim b$ should satisfy natural consistency requirements.
- E.g., if a is better than b and b is better than c, then a should be better than c. Thus, we arrive at the following definition.

6. Definition

- Let A be a set. Its elements will be called *alternatives*.
- By an *optimality criterion*, we mean a pair of binary relations $\langle >, \sim \rangle$ that satisfy the following conditions for all a, b, and c:
 - if a > b and b > c, then a > c;
 - if a > b and $b \sim c$, then a > c;
 - if $a \sim b$ and b > c, then a > c;
 - if $a \sim b$ and $b \sim c$, then $a \sim c$;
 - if a > b, then we cannot have $a \sim b$.
- We say that an alternative a_{opt} is *optimal* with respect to the optimality criterion $\langle >, \sim \rangle$ if for every $a \in A$, we have:
 - either $a_{\rm opt} > a$
 - or $a_{\rm opt} \sim a$.

7. Definition (cont-d)

- We say that the optimality criterion is *final* if there exists exactly one alternative which is optimal with respect to this criterion.
- In our case, alternatives are different (non-strictly) increasing functions D(t) for which D(0) = 0 and $D(t) \to D_0$ as $t \to \infty$.
- We will call them D_0 -alternatives.

8. Natural invariance

- There is no fixed unit of time relevant for this process.
- So it makes sense to require that the optimality criterion will not change if we use a different measuring unit to measure time.
- If we know the dependence D(t) in the original scale, how will this dependence look like in the new scale?
- If we replace the original measuring unit by a one which is λ times larger, then:
 - moment t in the new scale corresponds to
 - moment $\lambda \cdot t$ in the original scale.

• For example:

- if we replace second with minutes which are 60 times larger,
- then 2 minutes in the new scale is equivalent to $2 \cdot 60 = 120$ seconds.

9. Natural invariance (cont-d)

- In general:
 - the value $D_{\text{new}}(t)$ corresponding to moment t in the new scale
 - is thus equal to the value $D(\lambda \cdot t)$ when time is described in the original scale.
- Thus, $D_{\text{new}}(t) = D(\lambda \cdot t)$, and we arrive at the following definition.

10. Definition

- Let D_0 be a real number.
- For every $\lambda > 0$ and for every D_0 -alternative D(t), by a λ -rescaling $R_{\lambda}(D)$, we mean a D_0 -alternative $D_{\text{new}}(t) \stackrel{\text{def}}{=} D(\lambda \cdot t)$.
- We say that the optimality criterion of the set of all D_0 -alternatives is scale-invariant if:
 - for every $\lambda > 0$ and for every two D_0 -alternatives a and b,
 - we have the following:
 - * if a > b, then $R_{\lambda}(a) > R_{\lambda}(b)$, and
 - * if $a \sim b$, then $R_{\lambda}(a) \sim R_{\lambda}(b)$.

11. Main result

• Now, we are ready to formulate our main result.

• Proposition:

- Let D_0 be a real number, let $(<, \sim)$ be a final scale-invariant optimality criterion on the set of all D_0 -alternatives.
- Then, the optimal D_0 -alternative has the form $D(t) = D_0$ for all t > 0.
- This result explains the empirical fact that the burst of physical activity indeed leads to the best health results.

12. Proof: Part 1

- Let us first prove that:
 - for every final scale-invariant optimality criterion on the set of all D_0 -alternatives,
 - the optimal D_0 -alternative D_{opt} is itself scale-invariant,
 - i.e., $R_{\lambda}(D_{\text{opt}}) = D_{\text{opt}}$ for all $\lambda > 0$.
- Indeed, by definition, the fact that D_{opt} is optimal means that:
 - for every D_0 -alternative D,
 - we have either $D_{\rm opt} > D$ or $D_{\rm opt} \sim D$.
- This is true for every D_0 -alternative D.
- Thus, this property holds for $R_{\lambda^{-1}}(D)$.
- So, we have either $D_{\text{opt}} > R_{\lambda^{-1}}(D)$ or $D_{\text{opt}} \sim R_{\lambda^{-1}}(D)$.

13. Proof: Part 1 (cont-d)

- Since the optimality criterion is scale-invariant, we can conclude that:
 - either $R_{\lambda}(D_{\text{opt}}) > R_{\lambda}(R_{\lambda^{-1}}(D)) = D$
 - or $R_{\lambda}(D_{\text{opt}}) \sim R_{\lambda}(R_{\lambda^{-1}}(D)) = D$.
- This is true for all D_0 -alternatives D.
- Thus, by definition of optimality, this means that the D_0 -alternative $R_{\lambda}(D_{\text{opt}})$ is also optimal.
- However, we assumed that our optimality criterion is final.
- This means that there is only one optimal D_0 -alternative, and thus,

$$R_{\lambda}(D_{\mathrm{opt}}) = D_{\mathrm{opt}}.$$

• The statement is proven.

14. Proof: Part 2

- Let us now use the result from Part 1 to prove that the optimal D_0 alternative has the desired flash form.
- Indeed, the equality $R_{\lambda}(D_{\text{opt}}) = D_{\text{opt}}$ means that the values of these two functions coincide for all t.
- By definition of λ -rescaling, this means that for every t and every $\lambda > 0$, we have $D_{\text{opt}}(\lambda \cdot t) = D_{\text{opt}}(t)$.
- In particular, by taking $\lambda = s > 0$ and t = 1, we conclude that for every s > 0, we have $D_{\text{opt}}(s) = D_{\text{opt}}(1)$.
- Thus, the function $D_{\text{opt}}(s)$ attains the same constant value $D_{\text{opt}}(1)$ for all s > 0.
- In particular, for $s \to \infty$, we have $D_{\text{opt}}(s) \to D_{\text{opt}}(1)$.
- By definition of a D_0 -alternative, this limit must be equal to D_0 .
- Thus, $D_{\text{opt}}(1) = D_0$ and therefore, for all s > 0, we have $D_{\text{opt}}(s) = D_0$.

15. References

- M. Rosen, "Short bursts of physical activity cut women's risk of heart attack", *Science News*, December 26, 2024, https://www.sciencenews.org/article/heart-exercise-physical-activity-women
- E. Stamatakis, M. Ahmadi, R. K. Biswas, B. del Polo Cruz, C. Thogersen-Ntoumani, M. H. Murphy, A. Sabag, S. Lear, C. Chow, J. M. R. Gill, and M. Hamer, "Device-measured vigorous intermittent lifestyle physical activity (VILPA) and major adverse cardiovascular events: evidence of sex differences", *British Journal of Sports Medicine*, 2025, doi 10.1136/bjsports-2024-108484

16. Acknowledgments

This work was supported in part:

- by the US National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
 - HRD-1834620 and HRD-2034030 (CAHSI Includes),
 - EAR-2225395 (Center for Collective Impact in Earthquake Science C-CIES),
- by the AT&T Fellowship in Information Technology, and
- by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Focus Program SPP 100+ 2388, Grant Nr. 501624329,