Model Fusion: A New Approach To Processing Heterogenous Data

Omar Ochoa Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA

1. Need to Combine Data from Different Sources

- In many areas of science and engineering, we have different sources of data.
- For example, in geophysics, there are many sources of data for Earth models:
 - first-arrival passive seismic data (from the actual earthquakes);
 - first-arrival active seismic data (from the seismic experiments);
 - gravity data; and
 - surface waves.

2. Need to Combine Data (cont-d)

- Datasets coming from different sources provide complimentary information.
- Example: different geophysical datasets contain different information on earth structure.
- In general:
 - some of the datasets provide better accuracy and/or spatial resolution in some spatial areas;
 - other datasets provide a better accuracy and/or spatial resolution in other areas or depths.

• Example:

- gravity measurements have (relatively) low spatial resolution;
- a seismic data point comes from a narrow trajectory
 of a seismic signal so spatial resolution is higher.

3. Joint Inversion: An Ideal Future Approach

- At present: each of the datasets is often processed separately.
- It is desirable: to data from different datasets.
- *Ideal approach:* use all the datasets to produce a single model.
- *Problem:* in many areas, there are no efficient algorithms for simultaneously processing all the datasets.
- Challenge: designing joint inversion techniques is an important theoretical and practical challenge.

4. Data Fusion: Case of Interval Uncertainty

- In some practical situations, the value x is known with interval uncertainty.
- This happens, e.g., when we only know the upper bound $\Delta^{(i)}$ on each estimation error $\Delta x^{(i)}$: $|\Delta x^{(i)}| \leq \Delta_i$.
- In this case, we can conclude that $|x \widetilde{x}^{(i)}| \leq \Delta^{(i)}$, i.e., that $x \in \mathbf{x}^{(i)} \stackrel{\text{def}}{=} [\widetilde{x}^{(i)} \Delta^{(i)}, \widetilde{x}^{(i)} + \Delta^{(i)}].$
- Based on each estimate $\widetilde{x}^{(i)}$, we know that the actual value x belongs to the interval $\mathbf{x}^{(i)}$.
- Thus, we know that the (unknown) actual value x belongs to the intersection of these intervals:

$$\mathbf{x} \stackrel{\text{def}}{=} \bigcap_{i=1}^{n} \mathbf{x}^{(i)} = [\max(\widetilde{x}^{(i)} - \Delta^{(i)}), \min(\widetilde{x}^{(i)} + \Delta^{(i)})].$$

5. Proposed Solution - Model Fusion: Main Idea

- Reminder: joint inversion methods are still being developed.
- Practical solution: to fuse the models coming from different datasets.
- Simplest case data fusion, probabilistic uncertainty:
 - we have several estimates $\widetilde{x}^{(1)}, \ldots, \widetilde{x}^{(n)}$ of the same quantity x.
 - each estimation error $\Delta x^{(i)} \stackrel{\text{def}}{=} \widetilde{x}^{(i)} x$ is normally distributed with 0 mean and known st. dev. $\sigma^{(i)}$;
 - Least Squares: find x that minimizes $\sum_{i=1}^{n} \frac{(\widetilde{x}^{(i)} x)^2}{2 \cdot (\sigma^{(i)})^2}$;

- solution:
$$x = \frac{\sum_{i=1}^{n} \widetilde{x}^{(i)} \cdot (\sigma^{(i)})^{-2}}{\sum_{i=1}^{n} (\sigma^{(i)})^{-2}}.$$

Need to Combine Data . . .

Proposed Solution -...

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 6 of 51

Go Back

Full Screen

Close

6. Towards Formulation of a Problem

- What is given:
 - we have high spatial resolution estimates $\tilde{x}_1, \ldots, \tilde{x}_n$ of the values x_1, \ldots, x_n in several small cells;
 - we also have low spatial resolution estimates \widetilde{X}_j for the weighted averages

$$X_j = \sum_{i=1}^n w_{j,i} \cdot x_i.$$

- Objective: based on the estimates \widetilde{x}_i and X_j , we must provide more accurate estimates for x_i .
- Geophysical example: we are interested in the densities x_i .

7. Model Fusion: Case of Probabilistic Uncertainty

We take into account several different types of approximate equalities:

• Each high spatial resolution value \tilde{x}_i is approximately equal to the actual value x_i , w/known accuracy $\sigma_{h,i}$:

$$\widetilde{x}_i \approx x_i$$
.

• Each lower spatial resolution value \widetilde{X}_j is approximately equal to the weighted average, w/known accuracy $\sigma_{l,j}$:

$$\widetilde{X}_j \approx \sum_i w_{j,i} \cdot x_i.$$

- We usually have a prior knowledge $x_{pr,i}$ of the values x_i , with accuracy $\sigma_{pr,i}$: $x_i \approx x_{pr,i}$.
- Also, each lower spatial resolution value \widetilde{X}_j is \approx the value within each of the smaller cells:

$$\widetilde{X}_j \approx x_{i(l,j)}.$$

8. Case of Probabilistic Uncertainty: Details

• Each lower spatial resolution value X_j is approximately equal to the value within each of the smaller cells:

$$\widetilde{X}_j \approx x_{i(l,j)}.$$

• The accuracy of $X_j \approx x_{i(l,j)}$ corresponds to the (empirical) standard deviation:

$$\sigma_{e,j}^2 \stackrel{\text{def}}{=} \frac{1}{k_j} \cdot \sum_{l=1}^{k_j} \left(\widetilde{x}_{i(l,j)} - E_j \right)^2,$$

where

$$E_j \stackrel{\text{def}}{=} \frac{1}{k_j} \cdot \sum_{l=1}^{k_j} \widetilde{x}_{i(l,j)}.$$

9. Model Fusion: Least Squares Approach

- Main idea: use the Least Squares technique to combine the approximate equalities.
- We find the desired combined values x_i by minimizing the corresponding sum of weighted squared differences:

$$\sum_{i=1}^{n} \frac{(x_i - \widetilde{x}_i)^2}{\sigma_{h,i}^2} + \sum_{j=1}^{m} \frac{1}{\sigma_{l,j}^2} \cdot \left(\widetilde{X}_j - \sum_{i=1}^{n} w_{j,i} \cdot x_i\right)^2 + \cdots$$

$$\sum_{i=1}^{n} \frac{(x_i - x_{pr,i})^2}{\sigma_{pr,i}^2} + \sum_{j=1}^{m} \sum_{l=1}^{k_j} \frac{(\widetilde{X}_j - x_{i(l,j)})^2}{\sigma_{e,j}^2}.$$

Need to Combine Data . . .

Proposed Solution -...

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 10 of 51

Go Back

Full Screen

Close

10. Model Fusion: Solution

- To find a minimum of an expression, we:
 - differentiate it with respect to the unknowns, and
 - equate derivatives to 0.
- Differentiation with respect to x_i leads to the following system of linear equations:

$$\frac{1}{\sigma_{h,i}^{2}} \cdot (x_{i} - \widetilde{x}_{i}) + \sum_{j:j \ni i} \frac{1}{\sigma_{l,j}^{2}} \cdot w_{j,i} \cdot \left(\sum_{i'=1}^{n} w_{j,i'} \cdot x_{i'} - \widetilde{X}_{j}\right) + \frac{1}{\sigma_{pr,i}^{2}} \cdot (x_{i} - x_{pr,i}) + \sum_{j:j \ni i} \frac{1}{\sigma_{e,j}^{2}} \cdot (x_{i} - \widetilde{X}_{j}) = 0,$$

where $j \ni i$ means that the j-th low spatial resolution estimate covers i-th cell.

Need to Combine Data . . . Proposed Solution - . . . Numerical Example: . . . Additional Problem: . . . Auxiliary Problem: . . . Conclusions Acknowledgments Home Page Title Page Page 11 of 51 Go Back Full Screen Close

11. Simplification: Fusing High Spatial Resolution Estimates and Prior Estimates

- *Idea*: fuse each high spatial resolution estimate \widetilde{x}_i with a prior estimate $x_{pr,i}$.
- Detail: instead of $\frac{1}{\sigma_{h,i}^2} \cdot (x_i \widetilde{x}_i) + \frac{1}{\sigma_{pr,i}^2} \cdot (x_i x_{pr,i})$, we have a single term $\sigma_{f,i}^{-2} \cdot (x_i x_{f,i})$, where

$$x_{f,i} \stackrel{\text{def}}{=} \frac{\widetilde{x}_i \cdot \sigma_{h,i}^{-2} + x_{pr,i} \cdot \sigma_{pr,i}^{-2}}{\sigma_{h,i}^{-2} + \sigma_{pr,i}^{-2}}, \quad \sigma_{f,i}^{-2} \stackrel{\text{def}}{=} \sigma_{h,i}^{-2} + \sigma_{pr,i}^{-2}.$$

• Resulting simplified equations:

$$\sigma_{f,i}^{-2} \cdot (x_i - x_{f,i}) + \sum_{j:j \ni i} \frac{1}{\sigma_{l,j}^2} \cdot w_{j,i} \cdot \left(\sum_{i'=1}^n w_{j,i'} \cdot x_{i'} - \widetilde{X}_j\right) + \sum_{j:j \ni i} \frac{1}{\sigma_{e,j}^2} \cdot (x_i - \widetilde{X}_j) = 0.$$

Need to Combine Data...

Proposed Solution -...

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 12 of 51

Go Back

Full Screen

Close

12. Case of a Single Low Spatial Resolution Estimate

- Simplest case: we have exactly one low spatial resolution estimate \widetilde{X}_1 .
- In general: we only have high spatial resolution estimates for *some* of the cells.
- In geosciences: such a situation is typical: e.g.,
 - we have a low spatial resolution gravity estimates which cover a huge area in depth, and
 - we have high spatial resolution seismic estimates which only cover depths above the Moho.
- For convenience: let us number the cells for which we have high spatial resolution estimates first.
- Let h denote the total number of such cells.

13. Case of a Single Low Spatial Resolution Estimate: Simplified Algorithm

First, we compute the auxiliary value

$$\mu \stackrel{\text{def}}{=} \frac{1}{\sigma_{l,1}^2} \cdot \left(\sum_{i'} w_{1,i'} \cdot x_{i'} - \widetilde{X}_1 \right)$$

as $\mu = \frac{N}{D}$, where

$$N = \sum_{i=1}^{h} \frac{w_{1,i} \cdot (x_{f,i} - \widetilde{X}_1)}{1 + \frac{\sigma_{f,i}^2}{\sigma_{e,1}^2}},$$

and

$$D = \sigma_{l,1}^2 + \sum_{i=1}^h \frac{w_{1,i}^2 \cdot \sigma_{f,i}^2}{1 + \frac{\sigma_{f,i}^2}{\sigma_{e,1}^2}} + \left(\sum_{i=h+1}^n w_{1,i}^2\right) \cdot \sigma_{e,1}^2.$$

Need to Combine Data . . .

Proposed Solution -...

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 14 of 51

Go Back

Full Screen

Close

14. Case of a Single Low Spatial Resolution Estimate: Simplified Algorithm (cont-d)

• Once we know μ , we compute the desired estimates for x_i , $i = 1, \ldots, h$, as

$$x_{i} = \frac{x_{f,i}}{1 + \frac{\sigma_{f,i}^{2}}{\sigma_{e,1}^{2}}} - \frac{w_{1,i} \cdot \sigma_{f,i}^{2}}{1 + \frac{\sigma_{f,i}^{2}}{\sigma_{e,1}^{2}}} \cdot \mu + \widetilde{X}_{1} \cdot \frac{\frac{\sigma_{f,i}^{2}}{\sigma_{e,1}^{2}}}{1 + \frac{\sigma_{f,i}^{2}}{\sigma_{e,1}^{2}}}.$$

• We also compute estimates x_i for $i = h + 1, \ldots, n$, as

$$x_i = \widetilde{X}_1 - w_{1,i} \cdot \sigma_{e,1}^2 \cdot \mu.$$

Close

15. Numerical Example: Description

- Objective: to illustrate the above formulas.
- *Idea:* consider the simplest possible case, when we have
 - exactly one low spatial resolution estimate \widetilde{X}_1
 - that covers all n cells,

and when:

- all the weights are all equal $w_{1,i} = 1/n$;
- there is a high spatial resolution estimate corresponding to each cell (h = n);
- all high spatial resolution estimates have the same accuracy $\sigma_{h,i} = \sigma_h$;
- $-\sigma_{l,1} \ll \sigma_h$, so $\sigma_{l,1} \approx 0$; and
- there is no prior information, so $\sigma_{pr,i} = \infty$ and thus, $x_{f,i} = \widetilde{x}_i$ and $\sigma_{f,i} = \sigma_h$.

16. Additional Simplification

- In general: there are cells for which there are no high spatial resolution estimates.
- How to deal with these cells: we added a heuristic rule that
 - each lower spatial resolution value is approximately equal to the value within each of the constituent cells,
 - with the accuracy corresponding to the (empirical) standard deviation $\sigma_{e,j}$.
- In our simplified example: we have high spatial resolution estimate in each cell.
- So, there is no need for this heuristic rule.
- The corresponding heuristic terms in the least squares approach are proportional to $\frac{1}{\sigma_{e,1}^2}$, so we take $\sigma_{e,1}^2 = \infty$.

17. Formulas for the Simplified Case and Numerical Example

• Resulting formulas: $x_i = \widetilde{x}_i - \lambda$, where

$$\lambda \stackrel{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} \widetilde{x}_i - \widetilde{X}_1.$$

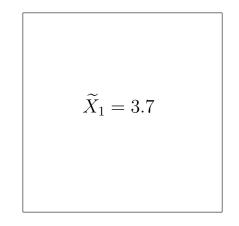
- Case study: n = 4 cells,
 - with the high spatial resolution accuracy $\sigma_h = 0.5$
 - and the high spatial resolution estimates (in each of these cells)

$$\widetilde{x}_1 = 2.0$$
, $\widetilde{x}_2 = 3.0$, $\widetilde{x}_3 = 5.0$, $\widetilde{x}_4 = 6.0$;

- the corresponding low spatial resolution estimate is $\widetilde{X}_1 = 3.7$.

18. Estimates of High and Low Spatial Resolution: Illustration

$$\widetilde{x}_1 = 2.0$$
 $\widetilde{x}_2 = 3.0$ $\widetilde{x}_3 = 5.0$ $\widetilde{x}_4 = 6.0$



Need to Combine Data . . . Proposed Solution - . . . Numerical Example: . . . Additional Problem: . . . Auxiliary Problem: . . . Conclusions Acknowledgments Home Page Title Page **>>** Page 19 of 51 Go Back Full Screen Close

19. Numerical Example: Discussion

- We assume that the low spatial resolution estimate is accurate $(\sigma_l \approx 0)$.
- So, the average of the four cell values is equal to the result $\widetilde{X}_1 = 3.7$ of this estimate:

$$\frac{x_1 + x_2 + x_3 + x_4}{4} \approx 3.7.$$

• For the high spatial resolution estimates \widetilde{x}_i , the average is slightly different:

$$\frac{\widetilde{x}_1 + \widetilde{x}_2 + \widetilde{x}_3 + \widetilde{x}_4}{4} = \frac{2.0 + 3.0 + 5.0 + 6.0}{4} = 4.0 \neq 3.7.$$

- Reason: high spatial resolution estimates are much less accurate: $\sigma_h = 0.5$.
- We use the low spatial resolution estimate to "correct" the high spatial resolution estimate.

20. Numerical Example: Results

• Here, the correcting term takes the form

$$\lambda = \frac{\widetilde{x}_1 + \dots + \widetilde{x}_n}{n} - \widetilde{X}_1 = \frac{2.0 + 3.0 + 5.0 + 6.0}{4} - 3.7 = 4.0 - 3.7 = 0.3.$$

• So, the corrected ("fused") values x_i take the form:

$$x_1 = \widetilde{x}_1 - \lambda = 2.0 - 0.3 = 1.7; \quad x_2 = \widetilde{x}_2 - \lambda = 3.0 - 0.3 = 2.7;$$

 $x_3 = \widetilde{x}_3 - \lambda = 5.0 - 0.3 = 4.7; \quad x_4 = \widetilde{x}_4 - \lambda = 6.0 - 0.3 = 5.7.$

• For these corrected values, the arithmetic average is equal to the low spatial resolution estimate:

$$\frac{x_1 + x_2 + x_3 + x_4}{4} = \frac{1.7 + 2.7 + 4.7 + 5.7}{4} = 3.7.$$

Need to Combine Data . . .

Proposed Solution - . . .

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 21 of 51

Go Back

Full Screen

Close

21. The Result of Model Fusion: Simplified Setting

$$\widetilde{x}_1 = 1.7$$
 $\widetilde{x}_2 = 2.7$ $\widetilde{x}_3 = 4.7$ $\widetilde{x}_4 = 5.7$

22. Taking $\sigma_{e,i}$ Into Account

- *Idea*: take into account the requirement that
 - the actual values in each cell are approximately equal to \widetilde{X}_1 ,
 - with the accuracy $\sigma_{e,1}$ equal to the empirical standard deviation.
- Resulting formulas: $\mu = \frac{\lambda}{\frac{1}{n} \cdot \sigma_h^2} = \frac{\frac{1}{n} \cdot \sum_{i=1}^n \widetilde{x}_i \widetilde{X}_1}{\frac{1}{n} \cdot \sigma_h^2}$, and

$$x_{i} = \frac{\widetilde{x}_{i} - \lambda}{1 + \frac{\sigma_{h}^{2}}{\sigma_{e,1}^{2}}} + \widetilde{X}_{1} \cdot \frac{\frac{\sigma_{h}^{2}}{\sigma_{e,1}^{2}}}{1 + \frac{\sigma_{h}^{2}}{\sigma_{e,1}^{2}}}.$$

Need to Combine Data . . .

Proposed Solution - . . .

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 23 of 51

Go Back

Full Screen

Close

23. Taking $\sigma_{e,i}$ Into Account: Numerical Example

- General idea: the actual values in each cell are approximately equal to \widetilde{X}_1 .
- In our example: $x_i \approx \widetilde{X}_1$, with the accuracy

$$\sigma_{e,1}^2 = \frac{1}{4} \cdot \sum_{i=1}^4 (\widetilde{x}_i - E_1)^2$$
, where $E_1 = \frac{1}{4} \cdot \sum_{i=1}^4 \widetilde{x}_i$.

• Here,
$$E_1 = \frac{1}{4} \cdot \sum_{i=1}^{4} \widetilde{x}_i = \frac{\widetilde{x}_1 + \widetilde{x}_2 + \widetilde{x}_3 + \widetilde{x}_4}{4} = 4.0$$
, thus,

$$\sigma_{e,1}^2 = \frac{(2.0 - 4.0)^2 + (3.0 - 4.0)^2 + (5.0 - 4.0)^2 + (6.0 - 4.0)^2}{4} = \frac{4 + 1 + 1 + 4}{4} = \frac{10}{4} = 2.5.$$

• Hence $\sigma_{e,1} \approx 1.58$.

Need to Combine Data . . .

Proposed Solution - . . .

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 24 of 51

Go Back

Full Screen

Close

24. Taking $\sigma_{e,i}$ Into Account (cont-d)

• Reminder:
$$x_i = \frac{1}{1 + \frac{\sigma_h^2}{\sigma_{e,1}^2}} \cdot (\widetilde{x}_i - \lambda) + \frac{\frac{\sigma_h^2}{\sigma_{e,1}^2}}{1 + \frac{\sigma_h^2}{\sigma_{e,1}^2}} \cdot \widetilde{X}_1.$$

• Here,
$$\sigma_h = 0.5$$
, $\sigma_{e,1}^2 = 2.5$, $\frac{\sigma_h^2}{\sigma_{e,1}^2} = \frac{0.25}{2.5} = 0.1$, so

$$\frac{1}{1 + \frac{\sigma_h^2}{\sigma_{e,1}^2}} = \frac{1}{1.1} \approx 0.91, \text{ and } \frac{\frac{\sigma_h^2}{\sigma_{e,1}^2}}{1 + \frac{\sigma_h^2}{\sigma_{e,1}^2}} \cdot \widetilde{X}_1 = \frac{0.1}{1.1} \cdot 3.7 \approx 0.34;$$

$$x_1 \approx 0.91 \cdot (2.0 - 0.3) + 0.34 \approx 1.89;$$

 $x_2 \approx 0.91 \cdot (3.0 - 0.3) + 0.34 \approx 2.79;$
 $x_3 \approx 0.91 \cdot (5.0 - 0.3) + 0.34 \approx 4.62;$
 $x_4 \approx 0.91 \cdot (6.0 - 0.3) + 0.34 \approx 5.53.$

Need to Combine Data . . .

Proposed Solution - . . .

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem:...

Conclusions

Acknowledgments

Home Page

Title Page

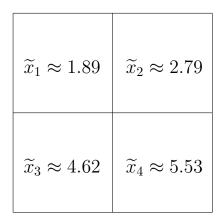
Page 25 of 51

Go Back

Full Screen

Close

25. The Result of Model Fusion: General Setting



- The arithmetic average of these four values is equal to $\frac{x_1 + x_2 + x_3 + x_4}{4} \approx \frac{1.89 + 2.79 + 4.62 + 5.53}{4} \approx 3.71.$
- So, within our computation accuracy, it coincides with the low spatial resolution estimate $X_1 = 3.7$.

26. Model Fusion: Case of Interval Uncertainty

- We take into account three different types of approximate equalities:
 - Each high spatial resolution estimate \tilde{x}_i is approximately equal to the actual value x_i :

$$\widetilde{x}_i - \Delta_{h,i} \le x_i \le \widetilde{x}_i + \Delta_{h,i}.$$

– Each lower spatial resolution value X_j is \approx to the average of values of all the cells $x_{i(1,j)}, \ldots, x_{i(k_i,j)}$:

$$\widetilde{X}_j - \Delta_{l,j} \le \sum_i w_{j,i} \cdot x_i \le \widetilde{X}_j + \Delta_{l,j}.$$

- Finally, we have prior bounds $\underline{x}_{pr,i}$ and $\overline{x}_{pr,i}$ on the values x_i , i.e., bounds for which

$$\underline{x}_{pr,i} \le x_i \le \overline{x}_{pr,i}.$$

• Our objective is to find, for each k = 1, ..., n, the range $[\underline{x}_k, \overline{x}_k]$ of possible values of x_k .

27. Additional Results

- Additional problem: need to fuse discrete and continuous data
- Auxiliary problem: estimating accuracy of fused models

28. Additional Problem: Need to Fuse Discrete and Continuous Models

- Traditionally, seismic models are *continuous*: the velocity smoothly changes with depth.
- In contrast, the gravity models are *discrete*: we have layers, in each of which the velocity is constant.
- The abrupt transition corresponds to a steep change in the continuous model.
- Both models locate the transition only approximately.
- So, if we simply combine the corresponding values valueby-value, we will have *two* transitions instead of one:
 - one transition where the continuous model has it, and
 - another transition nearby where the discrete model has it.

29. What We Plan to Do

- We want to avoid the misleading double-transition models.
- *Idea:* first fuse the corresponding transition locations.
- In this paper, we provide an algorithm for such location fusion.
- Specifically, first, we formulate the problem in the probabilistic terms.
- *Then*, we provide an algorithm that produces the most probable transition location.
- We show that the result of the probabilistic location algorithm is in good accordance with common sense.
- We also show how the commonsense intuition can be reformulated in fuzzy terms.

30. Available Data: What is Known and What Needs to Be Determined

- For each location, in the discrete model, we have the exact depth z_d of the transition.
- In contrast, for the continuous model, we do not have the abrupt transition.
- Instead, we have velocity values v(z) at different depths.
- We must therefore extract the corresponding transition value z_c from the velocity values.
- To be more precise, we have values $v_1, v_2, \ldots, v_i, \ldots, v_n$ corresponding to different depths.
- We need to find i for which the transition occurs between the depths i and i + 1.

Probabilistic Approach

- The difference $\Delta v_i \stackrel{\text{def}}{=} v_i v_{i+1} \ (j \neq i)$ is caused by many independent factors.
- Due to the Central Limit Theorem, we thus assume that it is normally distributed, with probability density

$$p_j \stackrel{\text{def}}{=} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left(-\frac{1}{2 \cdot \sigma^2} \cdot (\Delta v_j)^2\right).$$

- The value Δv_i at the transition depth i is not described by the normal distribution.
- We assume that differences corresponding to different depths j are independent, so:

$$L_i = \prod_{j \neq i} p_j = \prod_{j \neq i} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left(-\frac{1}{2 \cdot \sigma^2} \cdot (\Delta v_j)^2\right).$$

Need to Combine Data . . . Proposed Solution - . . . Numerical Example: . . . Additional Problem: . . . Auxiliary Problem: . . . Conclusions Acknowledgments Home Page Title Page Page 32 of 51

Go Back

Full Screen

Close

32. How to Find the Location: The General Idea of the Maximum Likelihood Approach

• Reminder: the likelihood of each model is:

$$L_i = \prod_{j \neq i} p_j = \prod_{j \neq i} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left(-\frac{1}{2 \cdot \sigma^2} \cdot (\Delta v_j)^2\right).$$

- Natural idea: select the parameters for which the likelihood of the observed data is the largest.
- The value L_i is the largest if and only if $-\ln(L_i)$ is the smallest: $-\ln(L_i) = \text{const} + \frac{1}{2 \cdot \sigma^2} \cdot \sum_{i \neq i} (\Delta v_i)^2 \to \min_i$.
- This sum is equal to $\sum_{j\neq i} (\Delta v_j)^2 = \sum_{j=1}^{n-1} (\Delta v_j)^2 (\Delta v_i)^2$.
- The first term in this expression does not depend on i.
- Thus, the difference is the smallest \Leftrightarrow the value $(\Delta v_i)^2$ is the largest $\Leftrightarrow |\Delta v_i|$ is the largest.

Need to Combine Data . . .

Proposed Solution - . . .

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 33 of 51

Go Back

Full Screen

Close

33. Resulting Location

- We want: to select the most probable location of the transition point.
- We select: the depth i_0 for which the absolute value $|\Delta v_i|$ of the difference $\Delta v_i = v_{i+1} v_i$ is the largest.
- This conclusion seems to be very reasonable:
 - the most probable location of the actual abrupt transition between the layers
 - is the depth at which the measured difference is the largest.

34. The Results of the Probabilistic Approach are in Good Accordance with Common Sense

- Intuitively, for each depth i, our confidence that i a transition point depends on the difference $|\Delta v_i|$:
 - the smaller the difference, the less confident we are that this is the actual transition depth, and
 - the larger the difference, the more confident we are that this is the actual transition depth.
- In our probabilistic model, we select a location with the largest possible value $|\Delta v_i|$.
- This shows that the probabilistic model is in good accordance with common sense.
- This coincidence increases our confidence in this result.

35. It May Be Useful to Formulate the Common Sense Description in Fuzzy Terms

- Fuzzy logic is known to be a useful way to formalize imprecise commonsense reasoning.
- Common sense: the degree of confidence d_i that i is a transition point is $f(|\Delta v_i|)$, for some monotonic f(z).
- It is reasonable to select a value i for which our degree of confidence is the largest $d_i = f(|\Delta v_i|) \to \max$.
- Since f(z) is increasing, this is equivalent to

$$|\Delta v_i| \to \max$$
.

- Of course, to come up with this conclusion, we do not need to use the fuzzy logic techniques.
- However, this description may be useful if we also have other expert information.

36. How Accurate Is This Location Estimate?

• Reminder: the likelihood has the form

$$L_i = \prod_{j \neq i} p_j = \prod_{j \neq i} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left(-\frac{1}{2 \cdot \sigma^2} \cdot (\Delta v_j)^2\right).$$

- We have found the most probable transition i_0 as the value for which L_i is the largest.
- Similarly: we can find σ for which L_i is the largest:

$$\sigma^2 = \frac{1}{n-2} \cdot \sum_{j \neq i_0} (\Delta v_j)^2.$$

- The probability P_i that the transition is at location i is proportional to L_i : $P_i = c \cdot L_i$.
- The coefficient c can be determined from the condition that the total probability is 1: $1 = \sum_{i} P_i = c \cdot \sum_{i=1}^{n} L_i$.
- So, $c = (\sum L_i)^{-1}$.

Need to Combine Data . . .

Proposed Solution -...

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 37 of 51

Go Back

Full Screen

Close

37. Accuracy of the Location Estimate (cont-d)

• The mean square deviation σ_0^2 of the actual transition depth from our estimate i_0 is defined as

$$\sigma_0^2 = \sum_{i=1}^{n-1} (i - i_0)^2 \cdot P_i.$$

- We know that $P_i = c \cdot L_i$, and we have formulas for computing L_i and c, so we can compute σ_0 .
- We applied this algorithm to the seismic model of El Paso area, and got $\sigma_0 \approx 1.5$ km.
- This value is of the same order (1-2 km) as the difference between:
 - the border depth estimates coming from the seismic data and
 - the border depth coming from the gravity data.

38. How to Fuse the Depth Estimates

- Now, we have two estimates for the transition depth:
 - the estimate i_d from the discrete (gravity) model;
 - the estimate i_0 from the continuous (seismic) model.
- The estimate i_d comes from a standard statistical analysis, so we know standard deviation σ_d .
- For i_0 , we already know the standard deviation σ_0 .
- It is reasonable to assume that both differences $i_d i$ and $i_0 i$ are normally distributed and independent:

$$p_i = \exp\left(-\frac{(i_d - i_f)^2}{2 \cdot \sigma_d^2}\right) \cdot \exp\left(-\frac{(i_0 - i_f)^2}{2 \cdot \sigma_0^2}\right).$$

• The most probable location i is when $p_i \to \max$, i.e.:

$$i_f = \frac{i_d \cdot \sigma_d^{-2} + i_0 \cdot \sigma_0^{-2}}{\sigma_d^{-2} + \sigma_0^{-2}}.$$

Page 39 of 51

Go Back

Full Screen

Close

39. Towards Fusing Actual Maps

- In the discrete model:
 - values $i < i_d$ correspond to the upper zone;
 - values $i > i_d$ correspond to the lower zone.
- Similarly, in the continuous model:
 - values $i < i_0$ correspond to the upper zone;
 - values $i > i_0$ correspond to the lower zone.
- So, for depths $i \leq \min(i_0, i_d)$ and $i \geq \max(i_0, i_d)$, both models correctly describe the zone.
- For these depths, we can simply fuse the values from both models.
- We can fuse them similarly to how we fused the depths.
- For intermediate depths, we need to adjust the models: e.g., by taking the nearest value from the correct zone.

40. How to Fuse the Actual Maps: First Stage

- First: we adjust both models so that they both have a transition at depth i_f .
- Adjusting the discrete model is easy: we replace
 - the original depth i_d
 - with the new (more accurate) fused value i_f .
- Adjusting the continuous model:
 - when $i_f < i_0$, the values at depths i between i_f and i_0 are erroneously assigned to the upper zone;
 - these values v_i must be replaced by the value of the nearest point at the lower zone v_{i_0+1} ;
 - when $i_f > i_0$, the values at depths i between i_0 and i_f are erroneously assigned to the lower zone;
 - these values v_i must be replaced by the value of the nearest point at the upper zone v_{i_0} .

41. How to Merge the Adjusted Models

- For each depth i, we now have two adjusted values v'_i and v''_i corresponding to two adjusted models.
- Let σ' and σ'' be the corresponding standard deviations.
- It is reasonable to assume that both differences $v'_i v_i$ and $v''_i v_i$ are normally distributed and independent:

$$p(v_i) = \exp\left(-\frac{(v_i' - v_i)^2}{2 \cdot (\sigma')^2}\right) \cdot \exp\left(-\frac{(v_i'' - v_i)^2}{2 \cdot (\sigma'')^2}\right).$$

• The most probable value \widetilde{v}_i is when $p(v_i) \to \max$, i.e.:

$$\widetilde{v}_i = \frac{v_i' \cdot (\sigma')^{-2} + v_i'' \cdot (\sigma'')^{-2}}{(\sigma')^{-2} + (\sigma'')^{-2}}.$$

Need to Combine Data . . .

Proposed Solution -...

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

>>

Go Back

Full Screen

Close

42. Auxiliary Problem: How to Estimate Accuracy of Fused Models

- Calibration is possible when we have a "standard" (several times more accurate) measuring instrument (MI).
- In geophysics, seismic (and other) methods are state-of-the-art.
- No method leads to more accurate determination of the densities.
- In some practical situations, we can use two similar MIs to measure the same quantities x_i .
- In geophysics, we want to estimate the accuracy of a model, e.g., a seismic model, a gravity-based model.
- In this situation, we do not have two similar applications of the same model.

43. Maximum Likelihood (ML) Approach Cannot Be Applied to Estimate Model Accuracy

- We have several quantities with (unknown) actual values $x_1, \ldots, x_i, \ldots, x_n$.
- We have several measuring instruments (or geophysical methods) with (unknown) accuracies $\sigma_1, \ldots, \sigma_m$.
- We know the results x_{ij} of measuring the *i*-th quantity x_i by using the *j*-th measuring instrument.
- At first glance, a reasonable idea is to find all the unknown quantities x_i and σ_i from ML:

$$L = \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi} \cdot \sigma_j} \cdot \exp\left(-\frac{(x_{ij} - x_i)^2}{2\sigma_j^2}\right) \to \max.$$

- Fact: the largest value $L = \infty$ is attained when, for some j_0 , we have $\sigma_{j_0} = 0$ and $x_i = x_{ij_0}$ for all i.
- *Problem:* this is not physically reasonable.

Need to Combine Data . . . Proposed Solution - . . . Numerical Example: . . . Additional Problem: . . . Auxiliary Problem: . . . Conclusions Acknowledgments Home Page Title Page Page 44 of 51 Go Back Full Screen Close

44. How to Estimate Model Accuracy: Idea

- For every two models, the difference $x_{ij} x_{ik} = \Delta x_{ij} \Delta x_{ik}$ is normally distributed, w/variance $\sigma_i^2 + \sigma_k^2$.
- We can thus estimate $\sigma_i^2 + \sigma_k^2$ as

$$\sigma_j^2 + \sigma_k^2 \approx A_{jk} \stackrel{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^n (x_{ij} - x_{ik})^2.$$

- So, $\sigma_1^2 + \sigma_2^2 \approx A_{12}$, $\sigma_1^2 + \sigma_3^2 \approx A_{13}$, and $\sigma_2^2 + \sigma_3^2 \approx A_{23}$.
- By adding all three equalities and dividing the result by two, we get $\sigma_1^2 + \sigma_2^2 + \sigma_3^2 = \frac{A_{12} + A_{13} + A_{23}}{2}$.
- Subtracting, from this formula, the expression for $\sigma_2^2 + \sigma_3^2$, we get $\sigma_1^2 \approx \frac{A_{12} + A_{13} A_{23}}{2}$.
- Similarly, $\sigma_2^2 \approx \frac{A_{12} + A_{23} A_{13}}{2}$ and $\sigma_3^2 \approx \frac{A_{13} + A_{23} A_{12}}{2}$.

Need to Combine Data . . .

Proposed Solution - . . .

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 45 of 51

Go Back

Full Screen

Close

45. How to Estimate Model Accuracy: General Case and Challenge

- General case: we may have $M \geq 3$ different models.
- Then, we have $\frac{M \cdot (M-1)}{2}$ different equations $\sigma_j^2 + \sigma_k^2 \approx A_{jk}$ to determine M unknowns σ_j^2 .
- When M > 3, we have more equations than unknowns,
- So, we can use the Least Squares method to estimate the desired values σ_i^2 .
- Challenge: the formulas $\sigma_1^2 \approx \widetilde{V}_1 \stackrel{\text{def}}{=} \frac{A_{12} + A_{13} A_{23}}{2}$ are approximate.
- Sometimes, these formulas lead to physically meaningless negative values \widetilde{V}_1 .
- It is therefore necessary to modify the above formulas, to avoid negative values.

46. An Idea of How to Deal With This Challenge

- The negativity challenge is caused by the fact that the estimates \widetilde{V}_j for σ_j^2 are approximate.
- For large n, the difference $\Delta V_j \stackrel{\text{def}}{=} \widetilde{V}_j \sigma_j^2$ is asymptotically normally distributed, with asympt. 0 mean.
- We can estimate the standard deviation Δ_j for this difference.
- Thus, $\sigma_j^2 = \widetilde{V}_j \Delta V_j$ is normally distributed with mean \widetilde{V}_j and standard deviation Δ_j .
- We also know that $\sigma_j^2 \geq 0$.
- As an estimate for σ_j^2 , it is therefore reasonable to use a conditional expected value $E\left(\widetilde{V}_j \Delta V_j \middle| \widetilde{V}_j \Delta V_j \geq 0\right)$.
- This new estimate is an expected value of a non-negative number and thus, cannot be negative.

Need to Combine Data... Proposed Solution - . . . Numerical Example: . . . Additional Problem: . . . Auxiliary Problem: . . . Conclusions Acknowledgments Home Page Title Page **>>**

Page 47 of 51

Go Back

Full Screen

Close

47. Resulting Algorithm

- Input: for each value x_i (i = 1, ..., n), we have three estimates x_{i1} , x_{i2} , and x_{i3} corr. to three diff. models.
- Objective: to estimate the accuracies σ_j^2 of these three models.
- First, for each $j \neq k$, we compute

$$A_{jk} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{ij} - x_{ik})^2.$$

• Then, we compute

$$\widetilde{V}_1 = \frac{A_{12} + A_{13} - A_{23}}{2}; \quad \widetilde{V}_2 = \frac{A_{12} + A_{23} - A_{13}}{2};$$

$$\widetilde{V}_3 = \frac{A_{13} + A_{23} - A_{12}}{2}.$$

 \bullet After that, for each j, we compute

$$\Delta_j^2 = \frac{1}{n} \cdot \left(\left(\widetilde{V}_j \right)^2 + \widetilde{V}_j \cdot \widetilde{V}_k + \widetilde{V}_j \cdot \widetilde{V}_\ell + \widetilde{V}_k \cdot \widetilde{V}_\ell \right).$$

Need to Combine Data . . .

Proposed Solution - . . .

Numerical Example: . . .

Additional Problem:...

Auxiliary Problem:...

Conclusions

Acknowledgments

Home Page

Title Page

Page 48 of 51

Go Back

Full Screen

Close

48. Resulting Algorithm (cont-d)

• Reminder: we compute $\widetilde{V}_j = \frac{A_{jk} + A_{j\ell} - A_{kl}}{2}$ and

$$\Delta_j^2 = \frac{1}{n} \cdot \left(\left(\widetilde{V}_j \right)^2 + \widetilde{V}_j \cdot \widetilde{V}_k + \widetilde{V}_j \cdot \widetilde{V}_\ell + \widetilde{V}_k \cdot \widetilde{V}_\ell \right).$$

- Then, we compute the auxiliary ratios $\delta_j = \frac{V_j}{\Delta_j}$.
- Finally, we return as an estimate σ_i^2 for σ_i^2 , the value

$$\widetilde{\sigma_j^2} = \widetilde{V}_j + \frac{\Delta_j}{\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\delta_j^2}{2}\right)}{\Phi(\delta_j)}.$$

• These non-negative estimates $\widetilde{\sigma_j^2}$ can now be used to fuse the models: for each i, we take $x_i = \frac{\sum \widetilde{\sigma_j^{-2}} \cdot x_{ij}}{\sum \widetilde{\sigma_i^{-2}}}$.

Need to Combine Data . . .

Proposed Solution - . . .

Numerical Example: . . .

Additional Problem: . . .

Auxiliary Problem: . . .

Conclusions

Acknowledgments

Home Page

Title Page

Page 49 of 51

Go Back

Full Screen

Close

49. Conclusions

- In many practical situations, there is a need to combine (fuse) data from different datasets.
- Ideal approach of *joint inversion* which uses all the data from all the datasets is often not yet practical.
- Main idea of *model fusion:* process each dataset separately and fuse the resulting models.
- In this thesis, algorithms are proposed for fusing models with different accuracy and spatial resolution.
- This thesis also addresses additional challenge:
 - fusing discrete and continuous models;
 - estimating the accuracy of fused models.
- This work can help geophysicists combine complementary models.

50. Acknowledgments

- This work was supported by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence).
- The author is greatly thankful:
 - to Drs. Ann Gates, Vladik Kreinovich, and Aaron Velasco for their help and support, and
 - to family and friends for being there with me.

Need to Combine Data Proposed Solution - . . . Numerical Example: . . . Additional Problem: . . . Auxiliary Problem: . . . Conclusions Acknowledgments Home Page Title Page 44 Page 51 of 51 Go Back Full Screen

Close