Equations Without Equations: Challenges on a Way to a More Adequate Formalization of Reasoning in Physics

Roberto Araiza¹ and Vladik Kreinovich^{1,2}
¹Bioinformatics Program
²Department of Computer Science
University of Texas, El Paso, TX 79968, USA
raraiza@utep.edu, vladik@utep.edu

1. Need to Formalize Reasoning in Physics

- Fact: in medicine, geophysics, etc., expert systems use automated expert reasoning to help the users.
- *Hope:* similar systems may be helpful in general theoretical physics as well.
- What is needed: describe physicists' reasoning in precise terms.
- Reason: formalize this reasoning inside an automated computer system.
- Formalized part of physicists' reasoning: theories are formulated in terms of PDEs (or ODEs) $\frac{dx}{dt} = F(x)$.
- Meaning: these equations describe how the corresponding fields (or quantities) x change with time t.

2. Mathematician's View of Physics and Its Limitations

- Mathematician's view: we know the initial conditions $x(t_0)$ at some moment of time t_0 .
- We solve the corresponding Cauchy problem and find the values x(t) for all t.
- Limitation: not all solutions to the equation $\frac{dx}{dt} = F(x)$ are physically meaningful.
- Example 1: when a cup breaks into pieces, the corresponding trajectories of molecules make physical sense.
- Example 2: when we reverse all the velocities, we get pieces assembling themselves into a cup.
- Fact: this is physically impossible.
- Fact: the reverse process satisfies all the original (T-invariant) equations.

3. Physicists' Explanation

- Reminder: not all solutions to the physical equation are physically meaningful.
- Explanation: the "time-reversed" solution is non-physical because its initial conditions are "degenerate".
- Clarification: once we modify the initial conditions even slightly, the pieces will no longer get together.
- Conclusion: not only the equations must be satisfied, but also the initial conditions must be "non-degenerate".
- Two challenges in formalizing this idea:
 - how to formalize "non-degenerate";
 - the separation between equations and initial conditions depends on the way equations are presented.
- First challenge: can be resolved by using Kolmogorov complexity and randomness.

4. First Example: Schrödinger's Equation

• Example: Schrödinger's equation

$$\mathrm{i}\hbar\cdot\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\cdot\nabla^2\Psi + V(\vec{r})\cdot\Psi.$$

- In this representation: the potential V is a part of the equation, and $\Psi(\vec{r}, t_0)$ are initial conditions.
- Transformation:
 - we represent $V(\vec{r})$ as a function of Ψ and its derivatives,
 - differentiate the right-hand side by time, and
 - equate the derivative w.r.t. time to 0.
- Result:

$$\frac{\partial}{\partial t} \left(\frac{\mathrm{i}\hbar}{\Psi} \cdot \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \cdot \frac{\nabla^2 \Psi}{\Psi} \right) = 0.$$

Need to Formalize Mathematician's View . . . Physicists' Explanation First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Title Page Page 5 of 9 Go Back Full Screen Close Quit

5. First Example (cont-d)

• Reminder:

$$\frac{\partial}{\partial t} \left(\frac{\mathrm{i}\hbar}{\Psi} \cdot \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \cdot \frac{\nabla^2 \Psi}{\Psi} \right) = 0.$$

- Mathematically: the new equation (2nd order in time) is equivalent to the Schrödinger's equation:
 - every solution of the Schrödinger's equation for any $V(\vec{r})$ satisfies this new equation, and
 - every solution of the new equation satisfies Schödinger's equation for some $V(\vec{r})$.
- Observation: in the new equation, initial conditions, in effect, include $V(\vec{r})$.
- Conclusion: "non-degeneracy" ("randomness") condition must now include $V(\vec{r})$ as well.

Need to Formalize Mathematician's View . . Physicists' Explanation First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Title Page Page 6 of 9 Go Back Full Screen Close Quit

6. Second Example: General Scalar Field

- Example: consider a scalar field φ with a generic Lagrange function $L(\varphi, a)$, with $a \stackrel{\text{def}}{=} \varphi_{,i}\varphi^{,i}$.
- Traditional formulation: every Lagrangian is possible, but initial conditions $\varphi(x, t_0)$ must be non-degenerate.
- Euler equations: $\frac{\partial L}{\partial \varphi} \partial_i \frac{\partial L}{\partial \varphi_i} = L_{,\varphi} \partial_i (2L_{,a} \cdot \varphi_{,i}) = 0$:

$$L_{,\varphi} - 2L_{,a} \cdot \Box \varphi - 2L_{,a\varphi} \cdot (\varphi_{,i}\varphi^{,i}) - 4L_{,aa} \cdot \varphi_{,ij}\varphi^{,i}\varphi^{,j} = 0.$$

- In general, on a 3-D Cauchy surface $t = t_0$, we can find points with arbitrary combination of $(\varphi, \varphi_{,i}\varphi^{,i}, \Box \varphi)$.
- Thus, by observing the evolution, we can find $\varphi_{,ij}\varphi^{,i}\varphi^{,j}$ for all possible triples $(\varphi, \varphi_{,i}\varphi^{,i}, \Box \varphi)$.
- So, we can predict future evolution w/o knowing L.

7. Scalar Field: Discussion and Conclusions

- Observation: the new "equation" does not contain L at all.
- Fact: a field φ satisfies the new equation \Leftrightarrow it satisfies the Euler-Lagrange equations for some L.
- Observation:
 - similarly to Wheeler's cosmological "mass without mass" and "charge without charge",
 - we now have "equations without equations".
- Conclusion: when formalizing physical equations:
 - we must not only describe them in a mathematical form,
 - we must also select *one* of the mathematically equivalent forms.

8. Acknowledgments

This work was supported in part:

- by National Science Foundation grant HRD-0734825, and EAR-0225670 and DMS-0532645 and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

