Equations Without Equations: Challenges on a Way to a More Adequate Formalization of Reasoning in Physics

Roberto Araiza¹ and Vladik Kreinovich^{1,2}
¹Bioinformatics Program
²Department of Computer Science
University of Texas, El Paso, TX 79968, USA
raraiza@utep.edu, vladik@utep.edu

1. Need to Formalize Reasoning in Physics

- Fact: in medicine, geophysics, etc., expert systems use automated expert reasoning to help the users.
- *Hope:* similar systems may be helpful in general theoretical physics as well.
- What is needed: describe physicists' reasoning in precise terms.
- Reason: formalize this reasoning inside an automated computer system.
- Formalized part of physicists' reasoning: theories are formulated in terms of PDEs (or ODEs) $\frac{dx}{dt} = F(x)$.
- Meaning: these equations describe how the corresponding fields (or quantities) x change with time t.

2. Mathematician's View of Physics and Its Limitations

- Mathematician's view: we know the initial conditions $x(t_0)$ at some moment of time t_0 .
- We solve the corresponding Cauchy problem and find the values x(t) for all t.
- Limitation: not all solutions to the equation $\frac{dx}{dt} = F(x)$ are physically meaningful.
- Example 1: when a cup breaks into pieces, the corresponding trajectories of molecules make physical sense.
- Example 2: when we reverse all the velocities, we get pieces assembling themselves into a cup.
- Fact: this is physically impossible.
- Fact: the reverse process satisfies all the original (T-invariant) equations.

First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Physicists Assume . . . A Seemingly Natural . . . The Above ... New Idea Coin Example Possible Practical Use . . . Result Title Page **>>** Page 3 of 16 Go Back Full Screen

3. Physicists' Explanation

- Reminder: not all solutions to the physical equation are physically meaningful.
- Explanation: the "time-reversed" solution is non-physical because its initial conditions are "degenerate".
- Clarification: once we modify the initial conditions even slightly, the pieces will no longer get together.
- Conclusion: not only the equations must be satisfied, but also the initial conditions must be "non-degenerate".
- Two challenges in formalizing this idea:
 - how to formalize "non-degenerate";
 - the separation between equations and initial conditions depends on the way equations are presented.
- First challenge: can be resolved by using Kolmogorov complexity and randomness.

First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Physicists Assume . . . A Seemingly Natural . . . The Above . . . New Idea Coin Example Possible Practical Use . . . Result Title Page Page 4 of 16 Go Back Full Screen

4. First Example: Schrödinger's Equation

• Example: Schrödinger's equation

$$\mathrm{i}\hbar\cdot\frac{\partial\Psi}{\partial t}=-rac{\hbar^2}{2m}\cdot
abla^2\Psi+V(\vec{r})\cdot\Psi.$$

- In this representation: the potential V is a part of the equation, and $\Psi(\vec{r}, t_0)$ are initial conditions.
- Transformation:
 - we represent $V(\vec{r})$ as a function of Ψ and its derivatives,
 - differentiate the right-hand side by time, and
 - equate the derivative w.r.t. time to 0.
- Result:

$$\frac{\partial}{\partial t} \left(\frac{\mathrm{i}\hbar}{\Psi} \cdot \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \cdot \frac{\nabla^2 \Psi}{\Psi} \right) = 0.$$

First Example: . . .

First Example (cont-d)

Second Example: . . .

Scalar Field: . . .

Acknowledgments

Physicists Assume . . .

A Seemingly Natural...
The Above...

New Idea

Coin Example

Possible Practical Use . . .

Result

Title Page

Page 5 of 16

Go Back

Full Screen

5. First Example (cont-d)

• Reminder:

$$\frac{\partial}{\partial t} \left(\frac{\mathrm{i}\hbar}{\Psi} \cdot \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \cdot \frac{\nabla^2 \Psi}{\Psi} \right) = 0.$$

- Mathematically: the new equation (2nd order in time) is equivalent to the Schrödinger's equation:
 - every solution of the Schrödinger's equation for any $V(\vec{r})$ satisfies this new equation, and
 - every solution of the new equation satisfies Schödinger's equation for some $V(\vec{r})$.
- Observation: in the new equation, initial conditions, in effect, include $V(\vec{r})$.
- Conclusion: "non-degeneracy" ("randomness") condition must now include $V(\vec{r})$ as well.

First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Physicists Assume . . . A Seemingly Natural . . . The Above... New Idea Coin Example Possible Practical Use . . . Result Title Page Page 6 of 16 Go Back Full Screen

6. Second Example: General Scalar Field

- Example: consider a scalar field φ with a generic Lagrange function $L(\varphi, a)$, with $a \stackrel{\text{def}}{=} \varphi_{,i}\varphi^{,i}$.
- Traditional formulation: every Lagrangian is possible, but initial conditions $\varphi(x, t_0)$ must be non-degenerate.
- Euler equations: $\frac{\partial L}{\partial \varphi} \partial_i \frac{\partial L}{\partial \varphi_i} = L_{,\varphi} \partial_i (2L_{,a} \cdot \varphi_{,i}) = 0$:

$$L_{,\varphi} - 2L_{,a} \cdot \Box \varphi - 2L_{,a\varphi} \cdot (\varphi_{,i}\varphi^{,i}) - 4L_{,aa} \cdot \varphi_{,ij}\varphi^{,i}\varphi^{,j} = 0.$$

- In general, on a 3-D Cauchy surface $t = t_0$, we can find points with arbitrary combination of $(\varphi, \varphi_{,i}\varphi^{,i}, \Box \varphi)$.
- Thus, by observing the evolution, we can find $\varphi_{,ij}\varphi^{,i}\varphi^{,j}$ for all possible triples $(\varphi, \varphi_{,i}\varphi^{,i}, \Box \varphi)$.
- So, we can predict future evolution w/o knowing L.

First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Physicists Assume . . . A Seemingly Natural . . . The Above... New Idea Coin Example Possible Practical Use . . . Result Title Page **>>** Page 7 of 16 Go Back Full Screen

7. Scalar Field: Discussion and Conclusions

- Observation: the new "equation" does not contain L at all.
- Fact: a field φ satisfies the new equation \Leftrightarrow it satisfies the Euler-Lagrange equations for some L.
- Observation:
 - similarly to Wheeler's cosmological "mass without mass" and "charge without charge",
 - we now have "equations without equations".
- Conclusion: when formalizing physical equations:
 - we must not only describe them in a mathematical form,
 - we must also select *one* of the mathematically equivalent forms.

8. Acknowledgments

This work was supported in part:

- by National Science Foundation grant HRD-0734825, and EAR-0225670 and DMS-0532645 and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

9. Physicists Assume that Initial Conditions and Values of Parameters are Not Abnormal

- To a mathematician, the main contents of a physical theory is its equations.
- \bullet Not all solutions of the equations have physical sense.
- Ex. 1: Brownian motion comes in one direction;
- Ex. 2: implosion glues shattered pieces into a statue;
- Ex. 3: fair coin falls heads 100 times in a row.
- *Mathematics:* it is possible.
- *Physics* (and common sense): it is not possible.
- Our objective: supplement probabilities with a new formalism that more accurately captures the physicists' reasoning.

10. A Seemingly Natural Formalizations of This Idea

- *Physicists:* only "not abnormal" situations are possible.
- Natural formalization: idea.
 - If a probability p(E) of an event E is small enough,
 - then this event cannot happen.
- Natural formalization: details. There exists the "smallest possible probability" p_0 such that:
 - if the computed probability p of some event is larger than p_0 , then this event can occur, while
 - if the computed probability p is $\leq p_0$, the event cannot occur.
- Example: a fair coin falls heads 100 times with prob. 2^{-100} ; it is impossible if $p_0 \ge 2^{-100}$.

11. The Above Formalization of the Notion of "Typical" is Not Always Adequate

- *Problem:* every sequence of heads and tails has exactly the same probability.
- Corollary: if we choose $p_0 \ge 2^{-100}$, we will thus exclude all sequences of 100 heads and tails.
- However, anyone can toss a coin 100 times.
- This proves that some such sequences are physically possible.
- Similar situation: Kyburg's lottery paradox:
 - in a big (e.g., state-wide) lottery, the probability of winning the Grand Prize is very small;
 - a reasonable person should not expect to win;
 - however, some people do win big prizes.

First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Physicists Assume . . . A Seemingly Natural . . . The Above... New Idea Coin Example Possible Practical Use . . . Result Title Page **>>** Page 12 of 16 Go Back Full Screen

12. New Idea

- Example: height:
 - if height is ≥ 6 ft, it is still normal;
 - if instead of 6 ft, we consider 6 ft 1 in, 6 ft 2 in, etc., then $\exists h_0$ s.t. everyone taller than h_0 is abnormal;
 - we are not sure what is h_0 , but we are sure such h_0 exists.
- General description: on the universal set U, we have sets $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_n \supseteq \ldots$ s.t. $\cap A_n = \emptyset$.
- Example: A_1 = people w/height ≥ 6 ft, A_2 = people w/height ≥ 6 ft 1 in, etc.
- A set $T \subseteq U$ is called a set of typical (not abnormal) elements if

 \forall definable sequence of sets A_n for which $A_n \supseteq A_{n+1}$ for all n and $\cap A_n = \emptyset$, $\exists N$ for which $A_N \cap T = \emptyset$.

First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Physicists Assume . . . A Seemingly Natural . . . The Above... New Idea Coin Example Possible Practical Use . . . Result Title Page **>>** Page 13 of 16 Go Back Full Screen

13. Coin Example

- Universal set $U = \{H, T\}^{\mathbb{N}}$
- Here, A_n is the set of all the sequences that start with n heads and have at least one tail.
- The sequence $\{A_n\}$ is decreasing and definable, and its intersection is empty.
- Therefore, for every set T of typical elements of U, there exists an integer N for which $A_N \cap T = \emptyset$.
- This means that if a sequence $s \in T$ is not abnormal and starts with N heads, it must consist of heads only.
- In physical terms: it means that
 - a random sequence (i.e., a sequence that contains both heads and tails) cannot start with N heads.
- This is exactly what we wanted to formalize.

14. Possible Practical Use of This Idea: When to Stop an Iterative Algorithm

- Situation in numerical mathematics:
 - we often know an iterative process whose results x_k are known to converge to the desired solution x,
 - but we do not know when to stop to guarantee that

$$d_X(x_k, x) \leq \varepsilon.$$

- Heuristic approach: stop when $d_X(x_k, x_{k+1}) \leq \delta$ for some $\delta > 0$.
- Example: in physics, if 2nd order terms are small, we use the linear expression as an approximation.

15. Result

- Let $\{x_k\} \in S$, k be an integer, and $\varepsilon > 0$ a real number.
- We say that x_k is ε -accurate if $d_X(x_k, \lim x_p) \leq \varepsilon$.
- Let $d \ge 1$ be an integer.
- By a stopping criterion, we mean a function $c: X^d \to R_0^+ = \{x \in R \mid x \geq 0\}$ that satisfies the following two properties:
 - If $\{x_k\} \in S$, then $c(x_k, \dots, x_{k+d-1}) \to 0$.
 - If for some $\{x_n\} \in S$ and $k, c(x_k, ..., x_{k+d-1}) = 0$, then $x_k = ... = x_{k+d-1} = \lim x_p$.
- Result: Let c be a stopping criterion. Then, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that
 - if $c(x_k, \ldots, x_{k+d-1}) \leq \delta$, and the sequence $\{x_n\}$ is not abnormal,
 - then x_k is ε -accurate.

Need to Formalize . . . Mathematician's View . . Physicists' Explanation First Example: . . . First Example (cont-d) Second Example: . . . Scalar Field: . . . Acknowledgments Physicists Assume . . . A Seemingly Natural . . . The Above... New Idea Coin Example Possible Practical Use... Result Title Page 44 Page 16 of 16 Go Back Full Screen

Close

Quit