From Interval Computations to Constraint-Related Set Computations: Towards Faster Estimation of Statistics and ODEs under Interval and p-Box Uncertainty

Martine Ceberio, Vladik Kreinovich, and Andrzej Pownuk University of Texas, El Paso, Texas 79968, USA emails mceberio@cs.utep.edu, vladik@utep.edu Need for Data Processing Measurement Interval Part: Outline Constraint-Based Set . . Estimating Variance... Dvnamical Systems . . . Possibility to Take . . . p-Boxes and Classes of . Acknowledgments Home Page Page 1 of 25 Go Back Full Screen Close Quit

1. Outline

- Interval computations: at each intermediate stage of the computation, we have intervals of possible values.
- In our previous papers, we proposed an extension of this technique to *set computations*.
- Set computations: on each stage,
 - in addition to *intervals* of possible values of the quantities,
 - we also keep *sets* of possible values of pairs (triples, etc.).
- In this paper, we consider several practical problems:
 - estimating statistics (variance, correlation, etc.),
 - solving ordinary differential equations (ODEs).
- For these problems, the new formalism enables us to find estimates in feasible (polynomial) time.

Measurement Interval Part: Outline Constraint-Based Set . . Estimating Variance... Dynamical Systems . . . Possibility to Take . . . p-Boxes and Classes of . Acknowledgments Home Page Title Page Page 2 of 25 Go Back Full Screen Close Quit

Need for Data Processing

- Situation: We are interested in the value of a physical quantity y.
- *Problem:* often, y that is difficult or impossible to measure directly.
- Examples: distance to a star, amount of oil in a well.
- Solution:
 - find easier-to-measure quantities x_1, \ldots, x_n which are related to y by a known relation $y = f(x_1, \ldots, x_n)$;
 - measure or estimate the values of the quantities x_1, \ldots, x_n ; results are $\widetilde{x}_i \approx x_i$;
 - estimate y as $\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$.
- Computing \widetilde{y} is called data processing.
- Comment: algorithm f can be complex, e.g., solving ODEs.

Need for Data Processing

Measurement . . .

Interval Part: Outline

Constraint-Based Set . . .

Estimating Variance . . .

Dynamical Systems...

Possibility to Take...

p-Boxes and Classes of . . .

Acknowledgments

Home Page

Title Page

44 | 1

Page 3 of 25

Go Back

Full Screen

Close

3. Measurement Uncertainty

- Measurement errors: measurement are never 100% accurate, so $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i \neq 0$.
- Result: the estimate $\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$ is, in general, different from the actual value $y = f(x_1, \dots, x_n)$.
- Problem: based on the information about Δx_i , estimate the error $\Delta y \stackrel{\text{def}}{=} \widetilde{y} y$.
- What do we know about Δx_i : the manufacturer of the measuring instrument (MI) supplies an upper bound Δ_i :

$$|\Delta x_i| \le \Delta_i.$$

• Interval uncertainty: $x_i \in [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]$.

4. Measurement Uncertainty: from Probabilities to Intervals

- Reminder: we know that $\Delta x_i \in [-\Delta_i, \Delta_i]$.
- Probabilistic uncertainty: often, we also know the probability of different values $\Delta x_i \in [\Delta_i, \Delta_i]$.
- We can determine these probabilities by using standard measuring instruments.
- Two cases when this is not done:
 - cutting edge measurements (e.g., Hubble telescope);
 - manufacturing.
- In these cases, we have a purely interval uncertainty.

5. Interval Part: Outline

- We start by recalling the basic techniques of interval computations and their drawbacks.
- Then we will describe the new set computation techniques.
- We describe a class of problems for which these techniques are efficient.
- Finally, we talk about how we can extend these techniques to other types of uncertainty.
- Example of other types of uncertainty: classes of probability distributions.

6. Straightforward Interval Computations: Main Idea

- Parsing: inside the computer, every algorithm consists of elementary operations $(+, -, \cdot, \min, \max, \text{etc.})$.
- Interval arithmetic: for each elementary operation f(a, b),
 - if we know the intervals \mathbf{a} and \mathbf{b} ,
 - we can compute the exact range $f(\mathbf{a}, \mathbf{b})$:

$$[\underline{a}, \overline{a}] + [\underline{b}, \overline{b}] = [\underline{a} + \underline{b}, \overline{a} + \overline{b}]; \quad [\underline{a}, \overline{a}] - [\underline{b}, \overline{b}] = [\underline{a} - \overline{b}, \overline{a} - \underline{b}];$$
$$[\underline{a}, \overline{a}] \cdot [\underline{b}, \overline{b}] = [\min(\underline{a} \cdot \underline{b}, \underline{a} \cdot \overline{b}, \overline{a} \cdot \underline{b}, \overline{a} \cdot \overline{b}), \max(\underline{a} \cdot \underline{b}, \underline{a} \cdot \overline{b}, \overline{a} \cdot \underline{b}, \overline{a} \cdot \overline{b})];$$

$$\frac{1}{[\underline{a},\overline{a}]} = \left[\frac{1}{\overline{a}},\frac{1}{\underline{a}}\right] \text{ if } 0 \not\in [\underline{a},\overline{a}]; \quad \frac{[\underline{a},\overline{a}]}{[\underline{b},\overline{b}]} = [\underline{a},\overline{a}] \cdot \frac{1}{[\underline{b},\overline{b}]}.$$

- Main idea: replace each elementary operation in f by the corresponding operation of interval arithmetic.
- *Known:* we get an enclosure $Y \supseteq y$ for the desired range.

Need for Data Processing

Measurement . . .

Interval Part: Outline

Constraint-Based Set...

Estimating Variance...

Dynamical Systems...

Possibility to Take...

p-Boxes and Classes of . . .

Acknowledgments

Home Page

Title Page

Page 7 of 25

Go Back

Full Screen

Close

7. Discussion

- Fact: not every real number can be exactly implemented in a computer, so:
 - after implementing an operation of interval arithmetic,
 - we must enclose the result $[r^-, r^+]$ in a computerrepresentable interval:
 - * round-off r^- to a smaller computer-representable value \underline{r} , and
 - * round-off r^+ to a larger computer-representable value \overline{r} .
- Computation time: increase by a factor of ≤ 4 .
- Computing exact range: NP-hard.
- Conclusion: excess width is inevitable.
- More accurate techniques exist: centered form, bisection, etc.

Need for Data Processing Measurement Interval Part: Outline Constraint-Based Set . . Estimating Variance... Dynamical Systems . . . Possibility to Take . . . p-Boxes and Classes of . Acknowledgments Home Page Title Page Page 8 of 25 Go Back Full Screen Close

8. Reason for Excess Width

- Main reason:
 - intermediate results are dependent on each other;
 - straightforward interval computations ignore this.
- Example: the range of $f(x_1) = x_1 x_1^2$ over $\mathbf{x}_1 = [0, 1]$ is $\mathbf{y} = [0, 0.25]$.
- Parsing:
 - we first compute $x_2 := x_1^2$,
 - then subtract x_2 from x_1 .
- Straightforward interval computations:
 - compute $\mathbf{r} = [0, 1]^2 = [0, 1],$
 - then $\mathbf{x}_1 \mathbf{x}_2 = [0, 1] [0, 1] = [-1, 1].$
- *Illustration:* the values of x_1 and x_2 are not independent: x_2 is uniquely determined by x_1 , as $x_2 = x_1^2$.

Measurement

Interval Part: Outline

Need for Data Processing

Constraint-Based Set . . .

Estimating Variance...

Dynamical Systems...

Possibility to Take...

p-Boxes and Classes of . . .

Acknowledgments

Home Page

Title Page

Page 9 of 25

Go Back

Full Screen

Close

- Main idea (Shary): at every computation stage, we also keep *sets*:
 - sets \mathbf{x}_{ij} of possible values of pairs (x_i, x_j) ;
 - if needed, sets \mathbf{x}_{ijk} of possible values of triples (x_i, x_j, x_k) .
- Example:
 - in addition to intervals $\mathbf{x}_1 = \mathbf{x}_2 = [0, 1],$
 - we also generate the set $\mathbf{x}_{12} = \{(x_1, x_1^2) \mid x_1 \in [0, 1]\}.$
- Result: Then, the desired range is computed as the range of $x_1 - x_2$ over this set – which is exactly [0, 0.25].
- Set arithmetic: e.g., if $x_k := x_i + x_j$, we set

$$\mathbf{x}_{ik} = \{(x_i, x_i + x_j) \mid (x_i, x_j) \in \mathbf{x}_{ij}\},\$$

$$\mathbf{x}_{jk} = \{(x_j, x_i + x_j) \mid (x_i, x_j) \in \mathbf{x}_{ij}\},\$$

$$\mathbf{x}_{kl} = \{(x_i + x_j, x_l) \mid (x_i, x_j) \in \mathbf{x}_{ij}, (x_i, x_l) \in \mathbf{x}_{il}, (x_j, x_l) \in \mathbf{x}_{jl}\}.$$

Need for Data Processing

Measurement

Interval Part: Outline Constraint-Based Set . .

Estimating Variance...

Dynamical Systems . . .

Possibility to Take... p-Boxes and Classes of . . .

Acknowledgments

Home Page

Title Page

>>

Page 10 of 25

Go Back

Full Screen

Close

10. From Main Idea to Actual Computer Implementation

- We fix the number C of granules (e.g., C = 10).
- We divide each interval \mathbf{x}_i into C equal parts \mathbf{X}_i .
- Thus each box $\mathbf{x}_i \times \mathbf{x}_j$ is divided into C^2 subboxes $\mathbf{X}_i \times \mathbf{X}_j$.
- We then describe each set \mathbf{x}_{ij} by listing all subboxes $\mathbf{X}_i \times \mathbf{X}_i$ which have common elements with \mathbf{x}_{ii} .
- The union of such subboxes is an enclosure for the desired set \mathbf{x}_{ij} .

11. Implementing Arithmetic Operations

• Example: implementing

$$\mathbf{x}_{ik} = \{(x_i, x_i + x_j) \mid (x_i, x_j) \in \mathbf{x}_{ij}\}.$$

- Step 1: we take all the subboxes $\mathbf{X}_i \times \mathbf{X}_j$ that form the set \mathbf{x}_{ij} .
- Step 2: for each of these subboxes, we enclosure the corresponding set of pairs

$$\{(x_i, x_i + x_j) \mid (x_i, x_j) \in \mathbf{X}_i \times \mathbf{X}_j\}$$

into a set $\mathbf{X}_i \times (\mathbf{X}_i + \mathbf{X}_j)$.

- Step 3: we add all subboxes $\mathbf{X}_i \times \mathbf{X}_k$ intersecting with this set to the enclosure for \mathbf{x}_{ik} .
- Enclosure property: we always have enclosure.
- Relative accuracy: 1/C.

Need for Data Processing Measurement Interval Part: Outline Constraint-Based Set . . Estimating Variance... Dynamical Systems . . . Possibility to Take . . . p-Boxes and Classes of . Acknowledgments Home Page Title Page **>>**

Page 12 of 25

Go Back

Full Screen

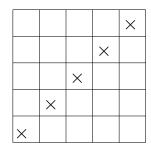
Close

- For f(x) = x x on [0, 1], the actual range is [0, 0];
- Problem: straightforward interval computations lead to an enclosure [0,1] [0,1] = [-1,1].
- In straightforward interval computations:
 - we have $r_1 = x$ with interval $\mathbf{r}_1 = [0, 1]$;
 - we have $r_2 = x$ with interval $\mathbf{x}_2 = [0, 1]$;
 - the variables r_1 and r_2 are dependent, but we ignore this dependence.
- New approach: $\mathbf{r}_1 = \mathbf{r}_2 = [0, 1]$, and \mathbf{r}_{12} :

• The resulting set is the exact range $\{0\} = [0, 0]$.

13. First Example (cont-d)

- Problem: compute the range of f(x) = x x on [0, 1].
- In the new approach: we have $\mathbf{r}_1 = \mathbf{r}_2 = [0, 1]$, and we also have \mathbf{r}_{12} :



- For each small box, we have [-0.2, 0.2], so the union is [-0.2, 0.2].
- If we divide into more pieces, we get close to 0.

Need for Data Processing Measurement Interval Part: Outline Constraint-Based Set . . Estimating Variance... Dynamical Systems . . . Possibility to Take... p-Boxes and Classes of . Acknowledgments Home Page Title Page Page 14 of 25 Go Back Full Screen Close

14. Second Example: Computing the Range of $x-x^2$

- Straightforwrad approach: $r_1 = x$ with $\mathbf{r}_1 = [0, 1], r_2 = x^2$ with $\mathbf{r}_2 = [0, 1], [0, 1] [0, 1] = [-1, 1] \supset [0, 0.25].$
- New approach: for $\mathbf{R}_1 = [0.2, 0.4]$, we have $\mathbf{R}_1^2 = [0.04, 0.16] \subseteq [0, 0.2]$.
- For $\mathbf{R}_1 = [0.4, 0.6], \mathbf{R}_1^2 = [0.16, 0.25] \subseteq [0, 0.2] \cup [0.2, 0.4],$ etc.

- For each pair $\mathbf{R}_1 \times \mathbf{R}_2$, we have $\mathbf{R}_1 \mathbf{R}_2 = [-0.2, 0.2]$, [0, 0.4] and [0.2, 0.6].
- So, the union of sets $\mathbf{R}_1 \mathbf{R}_2$ is $\mathbf{r}_3 = [-0.2, 0.6]$.
- If we divide into more pieces, we get closer to [0, 0.25].

Need for Data Processing Measurement Interval Part: Outline Constraint-Based Set . . Estimating Variance... Dynamical Systems . . . Possibility to Take . . . p-Boxes and Classes of . Acknowledgments Home Page Title Page **>>** Page 15 of 25 Go Back

Full Screen

Close

Limitations of This Approach

- Fact: to get an accuracy ε , we must use $\sim 1/\varepsilon$ granules.
- Reasonable situation: we want to compute the result with k digits of accuracy, i.e., with accuracy $\varepsilon = 10^{-k}$.
- *Problem:* we must consider exponentially many boxes $(\sim 10^k)$.
- Conclusion: this method is only applicable
 - when we want to know the desired quantity
 - with a given accuracy (e.g., 10%).

- We know: intervals $\mathbf{x}_1, \dots, \mathbf{x}_n$ of possible values of x_i .
- We need to compute: the range of the variance $V = \frac{1}{n} \cdot M \frac{1}{n^2} \cdot E^2$, where $M \stackrel{\text{def}}{=} \sum_{i=1}^n x_i^2$ and $E \stackrel{\text{def}}{=} \sum_{i=1}^n x_i$.
- Natural idea: compute $M_k \stackrel{\text{def}}{=} \sum_{i=1}^k x_i^2$ and $E_k \stackrel{\text{def}}{=} \sum_{i=1}^k x_i$: $M_0 = E_0 = 0$, $(M_{k+1}, E_{k+1}) = (M_k + x_{k+1}^2, E_k + x_{k+1})$.
- Set computations: $\mathbf{p}_0 = \{(M_0, E_0)\} = \{(0, 0)\},\$ $\mathbf{p}_{k+1} = \{(M_k + x^2, E_k + x) \mid (M_k, E_k) \in \mathbf{p}_k, x \in \mathbf{x}_{k+1}\},\$ $\mathbf{V} = \left\{\frac{1}{n} \cdot M \frac{1}{n^2} \cdot E^2 \mid (E, M) \in \mathbf{p}_n\right\}.$
- Accuracy: after n steps, we add the inaccuracy of n/C. Thus, to get $n/C \approx \varepsilon$, we must choose $C = n/\varepsilon$.
- Computation time: C^3 subboxes on n steps $O(n^4)$.

Measurement . . .

Need for Data Processing

Interval Part: Outline

Constraint-Based Set . . .

Estimating Variance...

Dynamical Systems...

Possibility to Take...

p-Boxes and Classes of . . .

Acknowledgments

Home Page

Title Page

>>

Page 17 of 25

Go Back

Full Screen

Close

- Central moment: $C_d = \frac{1}{n} \cdot \sum_{i=1}^n (x_i \overline{x})^d$ is a linear combination of d moments $M^{(j)} \stackrel{\text{def}}{=} \sum_{i=1}^n x_i^j$ for $j = 1, \dots, d$.
- How to compute: keep, for each k, the set of possible values of tuples $(M_k^{(1)}, \ldots, M_k^{(d)})$, where $M_k^{(j)} \stackrel{\text{def}}{=} \sum_{i=1}^k x_i^j$.
- Computation time: $n \cdot C^{d+1} \sim n^{d+2}$ steps.
- Covariance: $C = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i \frac{1}{n^2} \cdot \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i$.
- How to compute: keep the values of the triples (C_k, X_k, Y_k) , where $C_k \stackrel{\text{def}}{=} \sum_{i=1}^k x_i \cdot y_i$, $X_k \stackrel{\text{def}}{=} \sum_{i=1}^k x_i$, and $Y_k \stackrel{\text{def}}{=} \sum_{i=1}^k y_i$.
- Correlation $\rho = C/\sqrt{V_x \cdot V_y}$: similar.

Need for Data Processing

Measurement . . .

Interval Part: Outline

Constraint-Based Set . . .

Estimating Variance...

Dynamical Systems...

Possibility to Take...
p-Boxes and Classes of ...

Acknowledgments

Home Page

Title Page

Page 18 of 25

Go Back

Full Screen

Close

• Situation:

$$x_i(t+1) = f_i(x_1(t), \dots, x_m(t), t, a_1, \dots, a_k, b_1(t), \dots, b_l(t)),$$

where:

- the dependence f_i is known,
- we know the intervals \mathbf{a}_j of possible values of the global parameters a_i , and
- we know the intervals $\mathbf{b}_{j}(t)$ of possible values of the noise-like parameters $b_{j}(t)$.
- Set computations solution:
 - keep the set of all possible values of a tuple

$$(x_1(t),\ldots,x_m(t),a_1,\ldots,a_k),$$

- use the dynamic equations to get the exact set of possible values of this tuple at the moment t + 1.

Measurement . . .

Interval Part: Outline

Need for Data Processing

Constraint-Based Set . .

Estimating Variance...

Possibility to Take...

Dynamical Systems . . .

p-Boxes and Classes of .

Acknowledgments

Home Page

..

◆

>>

Title Page

Page 19 of 25

Go Back

Full Screen

Close

Close

- Traditional formulation: all combinations of $x_i \in \mathbf{x}_i$ are possible.
- In practice: we may have additional constraints on x_i .
- Example: $\mathbf{x}_i = [-1, 1]$ and $|x_i x_{i+1}| \le \varepsilon$ for some $\varepsilon > 0$ (i.e., x_i is smooth).
- Estimating: a high-frequency Fourier coefficient $f = x_1 x_2 + x_3 x_4 + \ldots + x_{2n-1} x_{2n}$.
- Usual interval computations: enclosure [-2n, 2n].
- Actual range of $(x_1 x_2) + (x_3 x_4) + \dots$ is $[-n \cdot \varepsilon, n \cdot \varepsilon]$.
- Set computations approach: keep the set \mathbf{s}_k of pairs (f_k, x_k) , where $f_k = x_1 x_2 + \ldots + (-1)^{k+1} \cdot x_k$, then
- $\mathbf{s}_{k+1} = \{ (f_k + (-1)^k \cdot x_{k+1}, x_{k+1}) \mid (f_k, x_k) \in \mathbf{s}_k \& |x_k x_{k+1}| \le \varepsilon \}.$
 - Result: almost exact bounds (modulo 1/C).

Measurement . . .

Need for Data Processing

Interval Part: Outline

Constraint-Based Set . . .
Estimating Variance . . .

Dynamical Systems . . .

Possibility to Take . . .

p-Boxes and Classes of . . .

Acknowledgments

Home Page

Title Page

Page 20 of 25

Go Back

Full Screen

Class

Close

20. Toy Example with Prior Dependence

- Case study: find the range of $r_1 r_2$ when $\mathbf{r}_1 = [0, 1]$, $\mathbf{r}_2 = [0, 1]$, and $|r_1 r_2| \le 0.2$.
- $Actual\ range:\ [-0.2, 0.2].$
- Straightforward interval computations: [0,1] [0,1] = [-1,1].
- New approach:
 - First, we describe the set \mathbf{r}_{12} :

- Next, we compute $\{r_1 r_2 \mid (r_1, r_2) \in \mathbf{r}_{12}\}.$
- Result: [-0.2, 0.2].

21. Toy Example with Prior Dependence (cont-d)

- Case study: find the range of $r_1 r_2$ when $\mathbf{r}_1 = [0, 1]$, $\mathbf{r}_2 = [0, 1]$, and $|r_1 r_2| \le 0.1$.
- $Actual\ range:\ [-0.2, 0.2].$
- Straightforward approach: [0, 1] [0, 1] = [-1, 1].
- New approach: first, we describe the constraint in terms of subboxes:

- Next, we compute $\mathbf{R}_1 \mathbf{R}_2$ for all possible pairs and take the union.
- Result: [-0.6, 0.6].
- If we divide into more pieces, we get the enclosure closer to [-0.2, 0.2].

Need for Data Processing Measurement Interval Part: Outline Constraint-Based Set . . Estimating Variance... Dynamical Systems . . . Possibility to Take . . . p-Boxes and Classes of . Acknowledgments Home Page Title Page

Page 22 of 25

Go Back

Full Screen

Close

- Situation:
 - in addition to \mathbf{x}_i ,
 - we may also have partial information about the probabilities of different values $x_i \in \mathbf{x}_i$.
- An *exact* probability distribution can be described, e.g., by its cumulative distribution function

$$F_i(z) = \operatorname{Prob}(x_i \le z).$$

- A partial information means that instead of a single cdf, we have a class \mathcal{F} of possible cdfs.
- *p-box:*
 - for every z, we know an interval $\mathbf{F}(z) = [\underline{F}(z), \overline{F}(z)];$
 - we consider all possible distributions for which, for all z, we have $F(z) \in \mathbf{F}(z)$.

Measurement

Interval Part: Outline

Need for Data Processing

Constraint-Based Set . . .

Estimating Variance...

Dynamical Systems...

Possibility to Take...

p-Boxes and Classes of . .

Acknowledgments

Home Page

Title Page

(4))

←

Page 23 of 25

Go Back

Full Screen

Close

- *Idea*: keep and update, for all t, the set of possible joint distributions for the tuple $(x_1(t), \ldots, a_1, \ldots)$.
- Implementation:
 - divide both the x-range and the probability (p-) range into C granules, and
 - describe, for each x-granule, which p-granules are covered.
- Remaining challenge:
 - to describe a p-subbox, we need to attach one of C probability granules to each of C x-granules;
 - these are $\sim C^C$ such attachments, so we need $\sim C^C$ subboxes;
 - for C = 10, we already get an unrealistic 10^{10} increase in computation time.

Need for Data Processing Measurement Interval Part: Outline Constraint-Based Set . . Estimating Variance... Dynamical Systems . . . Possibility to Take . . . p-Boxes and Classes of . Acknowledgments Home Page Title Page Page 24 of 25 Go Back Full Screen

Close

24. Acknowledgments

This work was supported in part:

- by NSF grant HRD-0734825, and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

Many thanks to Sergey P. Shary for valuable suggestions.

