Optimizing Cloud Use under Interval Uncertainty

Vladik Kreinovich and Esthela Gallardo

Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA vladik@utep.edu, egallardo5@miners.utep.edu Cloud Computing: . . . Financial Aspect of . . . Resulting Questions Why This Is Important . . Case of Complete . . . Resulting Formula for . . Optimization: General... Case of Interval . . . When Is It Beneficial... Home Page **>>** Page 1 of 14 Go Back Full Screen Close Quit

1. Cloud Computing: Official Definition by the US National Institute of Standards and Technology (NIST)

Cloud computing is a model for

- enabling ubiquitous, convenient, on-demand network access
- to a shared pool of configurable computing resources, such as:
 - networks,
 - servers,
 - storage,
 - applications, and
 - services
- that can be rapidly provisioned and released with minimal management effort or service provider interaction.

2. Financial Aspect of Cloud Computing

- One of the important aspects of cloud computing is that:
 - instead of performing all the computations on his/her own computer,
 - a user can sometimes rent computing time from a computer-time-rental company.
- Renting is usually more expensive than buying and maintaining one's own computer.
- So, if the user needs the same amount of computations day after day, cloud computing is not a good option.
- However, if a peak need for computing occurs rarely:
 - then it is often cheaper to rent the corresponding computation time
 - than to buy a lot of computing power and idle it most of the time.

3. Resulting Questions

- Once the user knows its computational requirements, the first question is: should we use the cloud at all?
- If yes:
 - how much computing power should we buy for inhouse computations and
 - how much computation time should we rent from the cloud company?
 - how much will it cost?
- Finally, if a cloud company offers a multi-year deal with fixed rates:
 - should we take it or
 - should we buy computation time on a year-by-year basis?

4. Why This Is Important and What We Propose

- One of the main purposes of cloud computing is to save user's money.
- However, most cloud users are computer folks with little knowledge of economics.
- As a result, often, they make wrong financial decisions about the cloud use.
- It is therefore important to come up with proper recommendations for using cloud computing.
- In this talk, we describe the desired financial recommendations:
 - first under the idealized assumption that we have a complete information, and
 - then, in a more realistic situation of interval uncertainty.

Financial Aspect of . . . Resulting Questions Why This Is Important . . . Case of Complete . . . Resulting Formula for . . Optimization: General... Case of Interval . . . When Is It Beneficial... Home Page Title Page **>>** Page 5 of 14 Go Back Full Screen Close Quit

Cloud Computing: . . .

5. Case of Complete Information

- Let c_0 be the overall cost of buying and maintaining one unit (e.g., Teraflops).
- Then, if we buy computers with computational ability x_0 , we pay $c_0 \cdot x_0$ for these computers.
- Let c_1 be a per-unit cost of computing in the cloud.
- Then, if we need to perform x computations in the cloud, we have to pay the amount $c_1 \cdot x$.
- Complete knowledge means that for each possible daily computation need x:
 - we know the probability p(x) that we need x computations;
 - this probability p(x) can be estimated by analyzing the previous needs;
 - for example, if we needed x computations in 10% of the days, this means that p(x) = 0.1.

6. Resulting Formula for the Cost

- We want to select the amount x_0 of computing power to buy.
- Then, everything in excess of x_0 will be sent to the cloud.
- We want to select this amount so that the expected overall cost of computations is the smallest possible.
- Th in-house cost is $c_0 \cdot x_0$.
- For each value $x > x_0$, the cost is $c_1 \cdot (x x_0)$, the probability is $p(x) \approx \rho(x) \cdot \Delta x$.
- Thus, the overall cost is

$$C(x_0) = c_0 \cdot x_0 + c_1 \cdot \int_{x_0}^{\infty} (x - x_0) \cdot \rho(x) \, dx.$$

7. Optimization: General Case

• We want to minimize the overall cost

$$C(x_0) = c_0 \cdot x_0 + c_1 \cdot \int_{x_0}^{\infty} (x - x_0) \cdot \rho(x) \, dx.$$

- Differentiating this expression w.r.t. x_0 and equating derivative to 0, we get $F(x_0) = 1 \frac{c_0}{c_1}$.
- So, the optimal amount x_0 of computational power to buy is a quantile corresponding to $p = 1 \frac{c_0}{c_1}$.
- When $c_1 = c_0$, there is no sense to buy anything at all: we can perform all the computations in the cloud.
- As the cloud costs c_1 increases, the threshold x_0 increases.
- So, when c_1 is very high, it does not make sense to use the cloud at all.

Financial Aspect of . . . Resulting Questions Why This Is Important . . Case of Complete . . . Resulting Formula for.. Optimization: General . . Case of Interval . . . When Is It Beneficial... Home Page Title Page **>>** Page 8 of 14 Go Back Full Screen Close Quit

Cloud Computing: . . .

8. Optimization: Example

- The user's need is usually described by the *power law* distribution: $F(x) = 1 \left(\frac{x}{t}\right)^{-\alpha}$ for all $x \ge t$.
- In this case, $x_0 = t \cdot \left(\frac{c_1}{c_0}\right)^{1/\alpha}$, and the resulting cost is $C(x_0) = c_0 \cdot x_0 \cdot \frac{1}{1 \frac{1}{\alpha}}$.
- The difference between the overall cost and the inhouse cost $c_0 \cdot x_0$ is the expected cost of using the cloud.
- The larger α , the faster the probabilities of the need for computing power x decrease with x.
- Thus, the smaller should be the expected cost of using the cloud.
- When α increases, indeed $C(x_0) c_0 \cdot x_0 \to 0$.

Cloud Computing: . . .

Financial Aspect of . . .

Resulting Questions

Why This Is Important . . .

Case of Complete . . .

Resulting Formula for . .

Optimization: General..

Case of Interval . . .

When Is It Beneficial . . .

Home Page
Title Page

(4 **)**

◆

Page 9 of 14

Go Back

Full Screen

Close

9. Case of Interval Uncertainty: Problem

- In practice, we rarely know the exact costs and probabilities.
- At best, we know the bounds on these quantities.
- So, we know:
 - the interval $[\underline{c}_0, \overline{c}_0]$ of possible values of c_0 ;
 - the interval $[\underline{c}_1, \overline{c}_1]$ of possible values of c_1 , and
 - the interval $[\underline{F}(x), \overline{F}(x)]$ of possible values of F(x) (a p-box).
- In this case, we only know that the cost $C(x_0)$ is between $\underline{C}(x_0)$ and $\overline{C}(x_0)$, where:

$$\underline{C}(x_0) = \underline{c}_0 \cdot x_0 + \underline{c}_1 \cdot \int_{x_0}^{\infty} (1 - \overline{F}(x)) \, dx;$$

$$\overline{C}(x_0) = \overline{c}_0 \cdot x_0 + \overline{c}_1 \cdot \int_{x_0}^{\infty} (1 - \underline{F}(x)) \, dx.$$

10. Case of Interval Uncertainty: Solution

• Natural requirements to decision making under interval uncertainty imply that we minimize

$$\alpha_H \cdot \underline{C}(x_0) + (1 - \alpha_H) \cdot \overline{C}(x_0).$$

- Here, α_H is Hurwicz's optimism-pessimism parameter:
 - $\alpha_H = 1$ corresponds to full optimism;
 - $\alpha_H = 0$ corresponds to full pessimism;
 - values $\alpha_H \in (0,1)$ mean that we take both best-case and worst-case scenarios into account.
- The resulting optimal x_0 is a p-th quantile of

$$F_H(x) = \alpha_H \cdot \overline{F}(x) + (1 - \alpha_H) \cdot \underline{F}(x), \text{ where}$$

$$p = 1 - \frac{\alpha_H \cdot \underline{c}_0 + (1 - \alpha_H) \cdot \overline{c}_0}{\alpha_H \cdot \underline{c}_1 + (1 - \alpha_H) \cdot \overline{c}_1}.$$

Cloud Computing: . . . Financial Aspect of . . . Resulting Questions Why This Is Important . . Case of Complete . . . Resulting Formula for . . Optimization: General.. Case of Interval . . . When Is It Beneficial... Home Page Title Page **>>** Page 11 of 14

Go Back

Full Screen

Close

11. When Is It Beneficial to Sign a Multi-Year Contract: Problem

- Let X denote the average yearly amount of computations to perform in the cloud.
- For a T-year contract, the price is $c_T < c_1$; shall we sign a contract?
- Computers improve year after year.
- \bullet So, the computing cost steadily decreases.
- Let v < 1 be a yearly decrease in cost.
- So, next year, computing in the cloud will cost $v \cdot c_1$ per computation, then $v^2 \cdot c_1$, etc.
- Payment delay is beneficial, since we can invest the money with interest.
- Thus, paying a next year is equivalent to paying $a \cdot q$ now, for some q < 1.

Cloud Computing: . . . Financial Aspect of . . . Resulting Questions Why This Is Important . . Case of Complete . . . Resulting Formula for . . Optimization: General... Case of Interval . . . When Is It Beneficial... Home Page Title Page **>>** Page 12 of 14 Go Back Full Screen

Close

12. When Is It Beneficial to Sign a Multi-Year Contract: Solution

- If we pay year-by-year, we pay $v^{t-1} \cdot c_1 \cdot X$ in year t.
- \bullet This is equivalent to paying now the following amount:

$$c_1 \cdot X \cdot (1 + q \cdot v + q^2 \cdot v^2 + \dots + q^{T-1} \cdot v^{T-1}) = c_1 \cdot X \cdot \frac{1 - (q \cdot v)^T}{1 - q \cdot v}.$$

- If we sign a contract, we pay $c_T \cdot X$ every year.
- This is equivalent to paying now the following amount:

$$c_T \cdot X \cdot (1 + q + q^2 + \ldots + q^{T-1}) = c_T \cdot X \cdot \frac{1 - q^T}{1 - q}.$$

• So, a multi-year contract is beneficial if

$$c_T \cdot \frac{1 - q^T}{1 - q} \le c_1 \cdot \frac{1 - (q \cdot v)^T}{1 - q \cdot v}.$$

Cloud Computing:...
Financial Aspect of...

Resulting Questions

Why This Is Important . . .

Case of Complete...

Resulting Formula for...

Optimization: General...

Case of Interval . . .

When Is It Beneficial...

Home Page

Title Page

Page 13 of 14

Go Back

Full Screen

Close

13. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721.

Cloud Computing: . . . Financial Aspect of . . . Resulting Questions Why This Is Important. Case of Complete . . . Resulting Formula for . . Optimization: General... Case of Interval... When Is It Beneficial.. Home Page Title Page 44 Page 14 of 14 Go Back Full Screen Close Quit