Need for Techniques Intermediate Between Interval and Probabilistic Ones

Olga Kosheleva¹ and Vladik Kreinovich²

Departments of ¹Teacher Education and ²Computer Science University of Texas at El Paso, El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu

1. Need to take uncertainty into account in high-performance computing

- One of the main applications of high performance computing is estimating the values of some quantities y based on the inputs x_1, \ldots, x_n .
- For example, in weather prediction:
 - we estimate tomorrow's temperature y at some location
 - based on the results x_i of meteorological measurements in the vicinity of this location.
- The problem is that:
 - even when the data processing algorithm $y = f(x_1, ..., x_n)$ describes the exact relation between y and x_i ,
 - the value $\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$ that we obtain by processing measurement results \widetilde{x}_i is not exact:
 - since the measurement results \tilde{x}_i are, in general, different from the actual (unknown) values x_i of the corresponding quantities.

2. Need to take uncertainty into account (cont-d)

- Because of the measurement errors $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i$, the result \widetilde{y} of data processing is, in general, different from the desired value y.
- It is important to provide an estimate for the resulting uncertainty

$$\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y.$$

- 3. What do we usually know and what we usually do not know about the measurement errors Δx_i
 - For each measuring instrument, we know the upper bound Δ_i on the absolute value of the measurement error: $|\Delta x_i| \leq \Delta_i$.
 - Indeed, if no such bound is guaranteed:
 - this would mean that for any measurement result, the actual value can be anything,
 - this would be a wild guess, not a measuring instrument.
 - In many practical applications, each measuring instrument is calibrated:
 - Before using this instrument, we several times compare its results with the results of a much more accurate instrument.

4. What do we usually do (cont-d)

- Thus, if the mean value of the measurement error was not 0:
 - we can find this mean value (known as bias) and
 - correct for it by subtracting this mean value from all the measurement results.
- Thus, we can safely assume that for each instrument, the mean value of the measurement error is 0.
- In most applications, we can also safely assume that the measurement errors are relatively small.
- So we can safely ignore terms which are quadratic or higher order in terms of these errors.
- For example, even if the relative measurement error is 10%, its square is 1%, which can be safely ignored in comparison with 10%.
- This is often all we know.

5. What do we usually do (cont-d)

- Ideally, we should also know the probability distributions of all the measurement errors and all the correlations between them.
- In simple computations:
 - when the number n of inputs is small,
 - it is possible to extract this information for all n instruments and all $n^2/2$ pairs of instruments.
- So, for simple computations, this information is sometimes available.
- However, for high-performance computing, when n is large, it is not feasible to extract all this information.
- So this information is usually not available.

6. Possibility of linearization

• By definition of the measurement errors, we have $x_i = \tilde{x}_i - \Delta x_i$, thus

$$\Delta y = f(\widetilde{x}_1, \dots, \widetilde{x}_n) - f(\widetilde{x}_1 - \Delta x_1, \dots, \widetilde{x}_n - \Delta x_n).$$

- Since the measurement errors Δx_i are small, we can:
 - expand the expression $f(\widetilde{x}_1 \Delta x_1, \dots, \widetilde{x}_n \Delta x_n)$ in Taylor series in terms of Δx_i and
 - keep only linear terms in this expansion.
- As a result, we get $\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$, where $c_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i}_{|x_1 = \tilde{x}_1, \dots, x_n = \tilde{x}_n}$.

7. How Δy is estimated now: interval technique

- Since we have no information about the correlation between the measurement errors, a natural idea is to consider all possible correlations.
- In general, since $|a+b| \le |a| + |b|$ and $|a \cdot b| = |a| \cdot |b|$, from the above formula, we get $|\Delta y| \le \sum_{i=1}^{n} |c_i| \cdot |\Delta x_i|$.
- Since $|\Delta x_i| \leq \Delta_i$, we get $|\Delta y| \leq \Delta_{\text{int}} \stackrel{\text{def}}{=} \sum_{i=1}^n |c_i| \cdot \Delta_i$.
- This value Δ_{int} is the exact upper bound, in the sense that it is possible to have $|\Delta y| = \Delta_{\text{int}}$ with probability 1.
- Indeed, this happens when:
 - with probability 1/2, we have $\Delta x_i = \Delta_i \cdot \text{sign}(c_i)$, where, as usual, sign(x) = +1 for x > 0 and sign(x) = -1 for x < 0; and
 - with probability 1/2, we have $\Delta x_i = -\Delta_i \cdot \text{sign}(c_i)$.

8. How Δy is estimated now: interval technique (cont-d)

- In this case:
 - with probability 1/2, we have $\Delta y = \Delta_{\rm int}$, and
 - with probability 1/2, we have $\Delta y = -\Delta_{\text{int}}$.
- This worst-case estimate is known as the *interval estimate*, since:
 - this is the only estimate that we can guarantee based on the available information,
 - that all measurement errors Δx_i are located within the corresponding interval $[-\Delta_i, \Delta_i]$.

9. Interval technique: efficient algorithms

- How can we compute the value Δ_{int} ?
- A natural idea is to explicitly use the above expression.
- When the function $f(x_1, ..., x_n)$ is given by an *explicit expression*, we can simply differentiate it and compute c_i .
- Often, the algorithm $f(x_1, \ldots, x_n)$ is only given as a proprietary black box.
- We do not know the exact algorithm, so we cannot differentiate this function.
- In this case, to find the values c_i , we can use numerical differentiation techniques.
- For example, we can take into account that, in general, the derivative is the limit of the ratios

$$c_i = \lim_{h_i \to 0} \frac{f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + h_i, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n) - \widetilde{y}}{h_i}.$$

10. Interval technique: efficient algorithms (cont-d)

- Thus, we can estimate c_i as the value of this ratio for some small h_i .
- The limitation of this natural idea is that for large n, it requires applying the algorithm $f(x_1, \ldots, x_n)$ n+1 times:
 - one time to compute $\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$ and
 - -n times to compute n values c_1, \ldots, c_n .
- In practice, the algorithm $f(x_1, \ldots, x_n)$ is often time-consuming it may require several hours on a high-performance computer.
- The number of inputs n may be in the thousands.
- In this case, the overall time needed to apply this natural idea is unrealistically large.

11. Interval technique: efficient algorithms (cont-d)

• In such situations, we can use a faster algorithm based on using Cauchy distribution, with probability density proportional to

$$\frac{1}{1 + \left(\frac{x}{\Delta}\right)^2}.$$

- This algorithm is based on the fact that:
 - if we have n independent random variables δ_i each of which is Cauchy-distributed with parameter Δ_i ,
 - then their linear combination $\sum c_i \cdot \delta_i$ is also Cauchy-distributed, with parameter $\Delta = \sum |c_i| \cdot \Delta_i$ which is exactly Δ_{int} .
- Thus, to estimate Δ_{int} , we, several times k = 1, ..., K, simulate the Cauchy-distributed values $\delta_i^{(k)}$.
- Then, we compute $\delta^{(k)} = f(\widetilde{x}_1 + \delta_1^{(k)}, \dots, \widetilde{x}_n + \delta_n^{(k)}) \widetilde{y}$.
- Due to linearization, we have $\delta^{(k)} = \sum_{i=1}^{n} c_i \cdot \delta_i^{(k)}$.

12. Interval technique: efficient algorithms (cont-d)

- Then we use the resulting Cauchy-distributed sample $\delta^{(1)}, \ldots, \delta^{(K)}$ to estimate the desired parameter $\Delta = \Delta_{\text{int}}$.
- The advantage of this Cauchy-based method is that, as with all Monte-Carlo simulation methods:
 - the number of simulations and thus, the number of times we apply the time-consuming algorithm $f(x_1, \ldots, x_n)$
 - depends only on the desired accuracy and does not depend on the number of inputs n.
- In general, the accuracy of a statistical estimate based on a sample of size K is approximately equal to $1/\sqrt{K}$.
- So, to estimate Δ_{int} with accuracy 20%, it is sufficient to apply the algorithm $f(x_1, \ldots, x_n)$ $K \approx 25$ times.
- This is much smaller than the thousands times needed for a direct estimation.

13. Comment

- The largest value of the expression Δ_{int} is attained at the endpoints of the corresponding intervals.
- So, a seemingly natural idea may be to apply the Monte-Carlo idea directly:
 - select, for each i, one of the endpoints $\Delta x_i = \Delta_i$ or $\Delta x_i = -\Delta_i$ with equal probability 1/2,
 - repeat this several (K) times and
 - take the largest of the resulting values $\Delta y^{(1)}, \dots, \Delta y^{(K)}$.
- Unfortunately, this simple idea leads to a drastic underestimation, even in the simplest case:
 - when $f(x_1, ..., x_n) = x_1 + ... + x_n$ and
 - when all the values x_i are measured with the same accuracy

$$\Delta_i = \Delta_1$$
.

• Indeed, in this case, the above formula leads to $\Delta_{\text{int}} = n \cdot \Delta_1$.

14. Comment (cont-d)

- As we have mentioned, it is possible that this value is actually attained.
- On the other hand, when we use the above seemingly natural idea, then for large n, according to the Central Limit Theorem:
 - the distribution of the sum is close to Gaussian,
 - with mean 0 (equal to the sum of the means) and variance $V = \sigma^2$ equal to the sum of the variances $V = n \cdot \delta_1^2$.
- Thus, e.g., with confidence 99.9%, we can conclude that the resulting values $\Delta y^{(k)}$ are:
 - within the 3-sigma interval, i.e.,
 - smaller that $3\sigma = 3\sqrt{n} \cdot \Delta_1$.
- For large n, we have $3\sqrt{n} \ll n$.
- So indeed, this seemingly natural idea can lead to a drastic underestimation.

15. Interval technique: limitation

- The main problem with this approach is that the resulting worst-case estimates are too pessimistic.
- In most practical situations, the actual value Δy is much smaller than this estimate $\Delta_{\rm int}$.

16. How can we explain this limitation

- The above limitation can be easily explained.
- Indeed, in the arrangement that leads to $\Delta y = \Delta_{\text{int}}$, all measurement errors are highly correlated, with correlation coefficients ± 1 .
- In practice, it is possible that common factors affect several measurement instruments.
- However, there are also usually other factors which affect only one measuring instrument.
- So the correlation is usually larger than -1 and smaller than 1.

17. How Δy is estimated now: probabilistic technique

- Another idea is that:
 - since we have no reason to prefer negative or positive correlation,
 - it is reasonable to assume that the correlation is 0, and,
 - more generally, that different measurement errors are independent.
- This is also what follows from the Maximum Entropy approach, when:
 - out of all possible joint distributions $\rho(\Delta x_1, \ldots, \Delta x_n)$ for which mean of each x_i is 0 and which are located on $[-\Delta_i, \Delta_i]$,
 - we select the distribution with the largest value of entropy

$$S \stackrel{\text{def}}{=} - \int \rho(\Delta x_1, \dots, \Delta x_n) \cdot \ln(\rho(\Delta x_1, \dots, \Delta x_n)) \, d\Delta x_1 \dots d\Delta x_n.$$

- Independence implies that $E[\Delta x_i \cdot \Delta x_j] = E[\Delta x_i] \cdot E[\Delta x_j]$.
- The mean value of each measurement error is 0, so $E[\Delta x_i \cdot \Delta x_j] = 0$.

18. How Δy is estimated now: probabilistic technique (cont-d)

- In this case, the expected value of $(\Delta y)^2$ is $E[(\Delta y)^2] = \sum_{i=1}^n c_i^2 \cdot V_i$.
- Here by $V_i \stackrel{\text{def}}{=} E[(\Delta x_i E[\Delta x_i])^2] = E[(\Delta x_i)^2]$, we denoted the variance of the *i*-th measurement error.
- As is well known in statistics, for large n, the deviation from this average is small since:
 - this deviation grows with n as \sqrt{n} ,
 - while the expected value itself grows as n.
- So we conclude that the actual value $(\Delta y)^2$ is, with high accuracy, equal to this expected value: $(\Delta y)^2 \approx \sum_{i=1}^n c_i^2 \cdot V_i$.
- We do not know the variances V_i , but, since $|\Delta x_i| \leq \Delta_i$, we have $(\Delta x_i)^2 \leq \Delta_i^2$.

19. How Δy is estimated now: probabilistic technique (cont-d)

- Thus, the expected value V_i of the square $(\Delta x_i)^2$ is also bounded by the same bound Δ_i^2 : $V_i \leq \Delta_i^2$.
- This upper bound on the variance V_i is the best we can have it is attained if:
 - we have $\Delta x_i = \Delta_i$ with probability 1/2, and
 - we have $\Delta x_i = -\Delta_i$ with probability 1/2.
- Thus, we conclude that $(\Delta y)^2 \leq \sum_{i=1}^n c_i^2 \cdot \Delta_i^2$, i.e., that:

$$|\Delta y| \le \Delta_{\text{prob}} \stackrel{\text{def}}{=} \sqrt{\sum_{i=1}^{n} c_i^2 \cdot \Delta_i^2}.$$

20. Probabilistic technique: efficient algorithms

- How can we estimate the value Δ_{prob} ?
- A natural idea is to explicitly use the above expression.
- When describing interval techniques, we have already mentioned how we can estimate the values c_i .
- The limitation of this natural idea is the same as for the similar interval idea:
 - for large n, it requires applying the algorithm $f(x_1, \ldots, x_n)$ too many times and
 - thus, the overall time needed to apply this natural idea is sometimes unrealistically large.

21. Probabilistic technique: efficient algorithms (cont-d)

- To speed up computations, we can use the fact that:
 - if we have n independent random variables δ_i each of which is normally distributed with mean 0 and standard deviation Δ_i ,
 - then their linear combination $\sum c_i \cdot \delta_i$ is also normally distributed, with the standard deviation equal to the desired expression.
- Thus, to estimate Δ_{prob} , we:
 - several times k = 1, ..., K, simulate the normally distributed values $\delta_i^{(k)}$,
 - compute $\delta^{(k)} = f(\widetilde{x}_1 + \delta_1^{(k)}, \dots, \widetilde{x}_n + \delta_n^{(k)}) \widetilde{y},$
 - due to linearization, we have $\delta^{(k)} = \sum_{i=1}^{n} c_i \cdot \delta_i^{(k)}$,
 - then use the resulting normally distributed sample $\delta^{(1)}, \ldots, \delta^{(K)}$ to estimate the desired standard deviation Δ_{prob} .

22. Probabilistic technique: efficient algorithms (cont-d)

- This method has the same advantage as the Cauchy method that when we use this method:
 - the number of times we apply the time-consuming algorithm $f(x_1, \ldots, x_n)$ depends only on the desired accuracy and
 - does not depend on the number of inputs n.

23. Probabilistic technique: limitation

- The main problem with this probabilistic technique is that it is too optimistic.
- It often drastically decreases the approximation error Δy .
- We had an example of such a drastic underestimation when we explained why:
 - a seemingly natural Monte-Carlo algorithm
 - does not lead to a reasonable estimate for interval uncertainty.

24. How can we explain this limitation

- The above limitation can be easily explained.
- Indeed, this technique assumes that all the measurement errors are independent.
- However, as we have mentioned, in reality, there may be common factors affecting several instruments, and thus, there is correlation.

25. Need for intermediate techniques

- The interval techniques are too pessimistic and the probability techniques are too optimistic.
- It is desirable to have intermediate techniques that would provide more realistic estimates.
- The main objective of this talk is to provide such estimates.

26. Main idea

- As we have mentioned, the problem with the interval technique is that it assumes that the absolute value of the correlation can be 1.
- In practice, it is always smaller than 1.
- Similarly, the problem with the probabilistic technique is that it assumes that all correlations are 0s.
- In practice, they can take non-zero values.
- So, a natural idea is to assume that:
 - there is some number b between 0 and 1
 - that provides an upper bound for absolute values $|r_{ij}|$ of all the correlations $r_{ij} \stackrel{\text{def}}{=} \frac{E[\Delta x_i \cdot \Delta x_j]}{\sigma_i \cdot \sigma_j}$, where $\sigma_i \stackrel{\text{def}}{=} \sqrt{V_i}$: $|r_{ij}| \leq b$.

27. Main idea (cont-d)

- The value b can be determined empirically, by:
 - computing absolute value of the correlation for several randomly selected pairs of measuring instruments and
 - selecting the largest of these values.

28. Comments

- In principle, the experimental determination of the correlations is possible.
- However, it is not easy to do in the field.
- Hopefully:
 - when several different sensors are produced by the same manufacturer,
 - this manufacturer will be able to provide these correlation values.
- Our estimates are based on on computing the largest absolute value of the observed correlations.
- We can instead make a usual reasonable assumption that correlations are normally distributed.
- Then, based on the observed correlation values, we can find the sample mean μ and the sample standard deviation σ .

29. Comments (cont-d)

- We can then conclude, with some confidence, that the actual correlation values are within the interval $[\mu k_0 \cdot \sigma, \mu + k_0 \cdot \sigma]$.
- Here, as usual, $k_0 = 2$ corresponds to reliability 95%, $k_0 = 3$ to 99.9%, and $k_0 = 6$ to reliability $1 10^{-8}$.

30. From the idea to the resulting formula

• From linearized formula, we conclude that

$$(\Delta y)^2 = \sum_{i=1}^{\infty} c_i^2 \cdot (\Delta x_i)^2 + \sum_{i \neq j} c_i \cdot c_j \cdot \Delta x_i \cdot \Delta x_j$$
, hence

$$E[(\Delta y)^2] = \sum_{i=1}^n c_i^2 \cdot E[(\Delta x_i)^2] + \sum_{i \neq j} c_i \cdot c_j \cdot E[\Delta x_i \cdot \Delta x_j], \text{ i.e.,}$$

$$E[(\Delta y)^2] = \sum_{i=1}^n c_i^2 \cdot V_i + \sum_{i \neq j} c_i \cdot c_j \cdot r_{ij} \cdot \sigma_i \cdot \sigma_j.$$

• We know that $(\Delta y)^2 \approx E[(\Delta y)^2]$, we know that $|r_{ij}| \leq b$, so:

$$(\Delta y)^2 \le \sum_{i=1}^n c_i^2 \cdot \sigma_i^2 + \sum_{i \ne j} |c_i| \cdot |c_j| \cdot b \cdot \sigma_i \cdot \sigma_j.$$

• We have mentioned that $\sigma_i \leq \Delta_i$, thus

$$(\Delta y)^2 \le \sum_{i=1}^n c_i^2 \cdot \Delta_i^2 + \sum_{i \ne j} |c_i| \cdot |c_j| \cdot b \cdot \Delta_i \cdot \Delta_j.$$

31. From the idea to the resulting formula (cont-d)

- Here, $\Delta_{\text{int}}^2 = \left(\sum_{i=1}^n |c_i| \cdot \Delta_i\right)^2 = \sum_{i=1}^n c_i^2 \cdot \Delta_i^2 + \sum_{i \neq j} |c_i| \cdot |c_j| \cdot \Delta_i \cdot \Delta_j$.
- So, the above formula the formula takes the form

$$(\Delta y)^{2} \leq b \cdot \Delta_{\text{int}}^{2} + (1 - b) \cdot \left(\sum_{i=1}^{n} c_{i}^{2} \cdot \Delta_{i}^{2}\right), \text{ i.e.,}$$
$$(\Delta y)^{2} \leq b \cdot \Delta_{\text{int}}^{2} + (1 - b) \cdot \Delta_{\text{prob}}^{2}, \text{ and}$$
$$|\Delta y| \leq \Delta_{b} \stackrel{\text{def}}{=} \sqrt{b \cdot \Delta_{\text{int}}^{2} + (1 - b) \cdot \Delta_{\text{prob}}^{2}}.$$

32. How to compute this estimate

- As we have mentioned earlier, there exist efficient algorithms:
 - for computing Δ_{prob} based on Monte-Carlo simulation of normally distributed measurement errors and
 - for computing Δ_{int} based on using Cauchy distribution.
- In both algorithms, the number of simulations depend only on the desired accuracy and does not depend on the number n of inputs.
- By using these algorithms, we can efficiently compute the new estimate.

33. Future work

- How realistic is this new estimate?
- How close is it to the actual error Δy ?
- To answer these questions, it is necessary to test this method on reallife examples.

34. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and
 - HRD-1834620 and HRD-2034030 (CAHSI Includes).
- It was also supported by the AT&T Fellowship in Information Technology.
- It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.