From Interval-Valued Probabilities to Interval-Valued Possibilities: Case Studies of Interval Computation under Constraints

L. Gutierrez¹, M. Ceberio¹, V. Kreinovich¹, R. L. Gruver¹, M. Peña¹, M. J. Rister¹, A. Saldaña¹, J. Vasquez¹, J. Ybarra¹, and S. Benferhat²

¹Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA, lcgutierrez@miners.utep.edu, vladik@utep.edu

²Centre de Recherche en Informatique de Lens CRIL, Université d'Artois, F62307 Lens Cedex, France, benferhat@cril.univ-artois.fr

Need to Process . . . How to Represent... How to Compute... Probabilities and Interval Computation . . . Conditional... Quantitative... Quantitative . . . Mean under Interval.. Home Page **>>** Page 1 of 29 Go Back Full Screen

Close

1. Introduction and Motivation

- In many real-life situations, we need to make decisions.
- We must decide whether a pattern of behavior represents an intrusion and if yes, activate defenses.
- In medicine, we need to decide on the best way to cure a patient.
- Each decision is based on our knowledge about the situation. This knowledge comes from two sources.
- First, we have records of previous experiences: e.g., records of different patients with different symptoms.
- We also have knowledge of experts: a skilled medical doctor can distinguish allergy cough from cold.
- Let us describe how to represent and process both types of knowledge.

2. Empirical Knowledge: Reminder

- The available information is usually incomplete.
- Based on this partial information, we often cannot make a definite conclusion about the present.
- For example, repeated attempts to login:
 - may represent intrusion, and
 - may also mean that a user forgot which of his passwords works where, and tries them all.
- In the past, there may have been many different situations similar to what we observe now.
- Their detailed analysis showed that they have been caused by different phenomena.
- We can say how frequently phenomena of different type were encountered in similar past situations.

3. Empirical Knowledge Is Usually Represented in Terms of Probabilities

- We can say how frequently phenomena of different type were encountered in similar past situations.
- For example, we may know that in situations with repeated logins,
 - in 10% of the cases, repeated logins were done by absent-minded users,
 - in 90% of the cases, it was an intrusion attempt.
- In other words, based on our prior experience, we know the *probabilities* of different phenomena.
- This is all the information that we can immediately deduce from the past.
- Thus, a general way to describe empirical knowledge is by describing the corresponding probabilities.

4. Need to Process Probabilities

- It is known that consistent preferences under such uncertainty can be described as follows:
 - we find utilities u_1, \ldots, u_n of different outcomes;
 - we select a decision a s.t. $\sum_{i=1}^{n} p_i(a) \cdot u_i \to \max$.
- So, we need to be able to compute the corresponding expected values.
- To compute the expected value, we need to know the probabilities $p_i(a)$.
- Sometimes, we know, e.g., p(cough | allergy), and we want p(allergy | cough).
- To compute these probabilities, we can use Bayes formula which is based on *conditional probabilities*.
- So, we need to compute conditional probabilities $p(A \mid B)$.

How to Represent . . . How to Compute... Probabilities and . . . Interval Computation . . . Conditional . . . Quantitative . . . Quantitative . . . Mean under Interval.. Home Page Title Page **>>** Page 5 of 29 Go Back Full Screen Close Quit

5. How to Represent Expert Knowledge?

- Sometimes, the expert can estimate the probabilities of different phenomena.
- However, often, an expert can only provide partial information about these probabilities.
- Often, an expert can only estimate relative probabilities $r_{ij} = p_i/p_j$, but not the actual values p_i .
- In this case, it is convenient to "normalize" these values so that max is 1, i.e., take $\mu_i = c \cdot p_i$, with max $\mu_i = 1$.
- \bullet These normalized values μ_i are known as possibilities.
- Sometimes, the expert only knows the *order* between probabilities, i.e., knows the values μ_i such that

$$\mu_i > \mu_j \Leftrightarrow p_i > p_j$$
.

• In this case, we can also normalize to 1: $\max \mu_i = 1$.

How to Represent... How to Compute... Probabilities and . . . Interval Computation . . . Conditional . . . Quantitative . . . Quantitative . . . Mean under Interval.. Home Page Title Page **>>** Page 6 of 29 Go Back Full Screen Close Quit

6. How to Compute Conditional Probabilities and Possibilities

- If we knew p_1, \ldots, p_n , and then learn that $i \in S \subset \{1, \ldots, n\}$, then $p(i \mid S) = 0$ for $i \notin S$, and $p(i \mid S) = \frac{p_i}{\sum_{i} p_j}$ if $i \in S$.
- For possibilities μ_1, \ldots, μ_n , after normalization, we get $\mu(i \mid S) = 0$ for $i \notin S$, and

$$\mu(i \mid S) = \frac{\mu_i}{\max_{i \in S} \mu_i} \text{ if } i \in S.$$

• For "qualitative" possibilities, it is sufficient to get the largest value to 1:

$$\mu(i \mid S) = \begin{cases} 1 & \text{if } i \in S \text{ and } \mu_i = \max_{j \in S} \mu_j \\ \mu_i & \text{if } i \in S \text{ and } \mu_i < \max_{j \in S} \mu_j \\ 0 & \text{if } i \notin S \end{cases}$$

How to Represent . . . How to Compute... Probabilities and . . . Interval Computation . . . Conditional . . . Quantitative . . . Quantitative . . . Mean under Interval... Home Page Title Page **>>** Page 7 of 29 Go Back Full Screen Close Quit

7. Probabilities and Possibilities Are Often Only Known With Interval Uncertainty

- Probabilities and possibilities have been successfully applied e.g., in intrusion detection.
- In practice, we usually only know the probabilities p_i and the possibilities μ_i with uncertainty.
- Often, we only know the bounds on each of these values, i.e., we know the *intervals* $\left[\underline{p}_i, \overline{p}_i\right]$ and $\left[\underline{\mu}_i, \overline{\mu}_i\right]$.
- We need to be able to compute the ranges of possible values of conditional probabilities and possibilities, etc.
- This is the problem that we will analyze in this talk.
- In many applications, we have a large amount of data to process, and need for real-time decisions.
- It is thus also important to make the range-computing algorithms as fast as possible.

- Before we start processing, it is important to find out which values from the intervals are actually possible.
- For example, if n = 2 and $p_1 = 0.5$, then even if $\left[\underline{p}_2, \overline{p}_2\right] = [0, 1]$ the only possible value of p_2 is 0.5.
- In general, we have a set of intervals $[\underline{x}_1, \overline{x}_1], \dots, [\underline{x}_n, \overline{x}_n]$ and a constraint $g(x_1, \dots, x_n) = c$:
 - for probabilities, the constraint is $\sum_{j=1}^{n} p_j = 1$;
 - for possibilities, the constraint is $\max_{j} \mu_{j} = 1$.
- \bullet For each i, we want to compute the "narrowed" interval

$$\{x_i \in [\underline{x}_i, \overline{x}_i] : \exists x_1 \dots \exists x_{i-1} \exists x_{i+1} \dots \exists x_n\}$$

$$(x_1 \in [\underline{x}_1, \overline{x}_1] \& \ldots \& x_n \in [\underline{x}_n, \overline{x}_n] \& g(x_1, \ldots, x_n) = c)$$
.

Need to Process...

How to Represent...

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional...

Quantitative...

Quantitative . . .

Mean under Interval...

Home Page

Title Page

Page 9 of 29

Go Back

Full Screen

Close

9. Narrowing Intervals: Case of Probabilities

• Since $p_i = 1 - \sum_{j \neq i} p_j$, we have $p_i \ge 1 - \sum_{j \neq i} \overline{p}_j$ and $p_i \le 1 - \sum_{j \neq i} \underline{p}_j$. Thus, the new bounds on p_i are

$$\left[\max \left(\underline{p}_i, 1 - \sum_{j \neq i} \overline{p}_j \right), \min \left(\overline{p}_i, 1 - \sum_{j \neq i} \underline{p}_j \right) \right].$$

- Straightforward computation requires O(n) time for each i, i.e., $O(n^2)$.
- It is faster to first compute $\underline{P} = \sum_{i=1}^{n} \underline{p}_{i}$ and $\overline{P} = \sum_{i=1}^{n} \overline{p}_{i}$, then we need linear time O(n) to compute

$$\left[\max\left(\underline{p}_i,1-\overline{P}+\overline{p}_i\right),\min\left(\overline{p}_i,1-\underline{P}+\underline{p}_i\right)\right].$$

• We cannot compute faster: we need to compute n intervals, so we cannot use fewer than O(n) steps.

10. Narrowing Intervals: Case of Possibilities

- A sequence of possibility intervals $\left[\underline{\mu}_i, \overline{\mu}_i\right] \subseteq [0,1]$ is consistent if and only if $\max_i \overline{\mu}_i = 1$.
- If this sequence is consistent, then the corresponding narrowed intervals have the following form.
- If we have several intervals with $\overline{\mu}_j = 1$, then there is no narrowing:

$$\left[\mu_i^-, \mu_i^+\right] = \left[\underline{\mu}_i, \overline{\mu}_i\right]$$
 for each i .

- If there is only one interval with $\overline{\mu}_j = 1$, then:
 - for this interval, $\left[\mu_i^-, \mu_i^+\right] = [1, 1]$, while
 - for all other intervals $i \neq j$, there is no narrowing:

$$\left[\mu_i^-, \mu_i^+\right] = \left[\underline{\mu}_i, \overline{\mu}_i\right].$$

Need to Process...

How to Represent...

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative . . .

Quantitative . . .

Mean under Interval...

Home Page

Title Page

Page 11 of 29

Go Back

Full Screen

Close

- Traditional interval computations:
 - we know an algorithm $f(x_1, \ldots, x_n)$;
 - we know the intervals $[\underline{x}_1, \overline{x}_1], \dots, [\underline{x}_n, \overline{x}_n];$
 - we want to compute the range

$$\{f(x_1,\ldots,x_n):x_1\in[\underline{x}_1,\overline{x}_1]\&\ldots\&x_n\in[\underline{x}_n,\overline{x}_n]\}.$$

- Interval computation under constraints:
 - we know algorithms $f(x_1, \ldots, x_n)$ and $g(x_1, \ldots, x_n)$ and a number c;
 - we know the intervals $[\underline{x}_1, \overline{x}_1], \dots, [\underline{x}_n, \overline{x}_n];$
 - we want to compute the range

$$\{f(x_1,\ldots,x_n): \forall i \, (x_i \in [\underline{x}_i,\overline{x}_i]) \,\&\, g(x_1,\ldots,x_n) = c\}.$$

Need to Process...

How to Represent...

How to Compute...

Probabilities and...

Interval Computation...

Conditional...

Quantitative . . .

Quantitative . . .

Mean under Interval . . .

Home Page

Title Page

Page 12 of 29

Go Back

Full Screen

Close

$$y_1 = f_1(x_1, \dots, x_n), \dots, y_m = f_m(x_1, \dots, x_n).$$

- Sometimes, there is an additional constraint relating these characteristics: $h(y_1, \ldots, y_m) = d$.
- In this case, interval computation under constraints enable us to find the ranges $[y_1, \overline{y}_1], \ldots, [y_m, \overline{y}_m]$.
- A natural question is: are all combinations (y_1, \ldots, y_m) with $y_j \in [\underline{y}_j, \overline{y}_j]$ with $h(y_1, \ldots, y_m) = d$ possible?
- In other words, can we find $x_i \in [\underline{x}_i, \overline{x}_i]$ for which $g(x_1, \ldots, x_n) = c$ and $y_j = f_j(x_1, \ldots, x_n)$?
- If all comb. are possible, then the set S of all combinations (y_1, \ldots, y_m) is $S = B \stackrel{\text{def}}{=} [y_1, \overline{y}_1] \times \ldots \times [y_m, \overline{y}_m]$.
- Otherwise, S is a proper subset of the box B.

Need to Process...

How to Represent...

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative . . .

Quantitative...

Mean under Interval . . .

Home Page

Title Page

Page 13 of 29

Go Back

Full Screen

Close

- We know the intervals $\left[\underline{p}_i, \overline{p}_i\right] \subseteq [0, 1]$.
- We assume that these intervals have already been narrowed.
- We know the condition S, i.e., a set $S \subset \{1, \ldots, n\}$.
- We want to find, for each $i \in S$,
 - the range $\left[\underline{q}_i, \overline{q}_i\right]$ of possible values of the conditional probability

$$q_i = \frac{p_i}{\sum_{j \in S} p_j}$$

- when
$$p_j \in \left[\underline{p}_j, \overline{p}_j\right]$$
 and $\sum_{i=1}^n p_i = 1$.

Need to Process...

How to Represent...

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative...

Quantitative . . .

Mean under Interval...

Home Page

Title Page

Page 14 of 29

Go Back

Full Screen

Close

Ciose

• If we divide both the numerator and the denominator of $q_i = \frac{p_i}{\sum_{j \in S} p_j}$ by p_i , we get

$$q_i = \frac{1}{1 + \sum_{j \in S, \ j \neq i} \frac{p_j}{p_i}}.$$

- This expression is increasing in p_i and decreasing in all other values p_i , $j \neq i$; thus:
 - $-q_i \rightarrow \min \text{ when } p_i \rightarrow \min \text{ and } p_j \rightarrow \max \text{ for } j \neq i;$
 - $-q_i \to \max \text{ when } p_i \to \max \text{ and } p_j \to \min \text{ for } j \neq i.$
- So, we get the range $\left| \frac{\underline{p}_i}{\underline{p}_i + \sum\limits_{j \in S, \ j \neq i} \overline{p}_j}, \frac{\overline{p}_i}{\overline{p}_i + \sum\limits_{j \in S, \ j \neq i} \underline{p}_j} \right|$.

Need to Process . . . How to Represent . . . How to Compute... Probabilities and . . . Interval Computation . . . Conditional . . . Quantitative . . . Quantitative . . . Mean under Interval... Home Page Title Page Page 15 of 29 Go Back Full Screen Close Quit

If We Take Constraints Into Account, Not All Such Values Are Possible

$$\bullet \text{ Reminder: } [\underline{q}_1, \overline{q}_1] = \left[\frac{\underline{p}_i}{\underline{p}_i + \sum\limits_{j \in S, \ j \neq i} \overline{p}_j}, \frac{\overline{p}_i}{\overline{p}_i + \sum\limits_{j \in S, \ j \neq i} \underline{p}_j} \right].$$

- \bullet Let us take $n=10, \; \left \lceil \underline{p}_i, \overline{p}_i \right \rceil = [0, 0.2]$ for all i, and $S = \{1, \dots, 9\}.$
- One can easily check that these intervals are already narrowed.
- The above formula leads to the upper bound

$$\overline{q}_1 = \frac{\overline{p}_1}{\overline{p}_1 + \sum_{i \neq 1} \underline{p}_j} = \frac{0.2}{0.2 + 0 + \dots + 0} = 1.$$

• However, $\overline{q}_1 = 1$ is only attained when $p_1 = 0.2$ and $p_2 = \dots = p_9 = 0$, when $\sum_{i=1}^{10} p_i = \sum_{i=1}^{9} p_i + p_{10} \le 0.4 < 1$.

Need to Process . . . How to Represent . . .

How to Compute...

Conditional . . .

Probabilities and . . . Interval Computation . . .

Quantitative . . .

Quantitative . . .

Mean under Interval...

Home Page

Title Page

Page 16 of 29

Go Back

Full Screen

Close

16. Conditional Probability: Bounds That Take Constraints Into Account

- We know the intervals $\left[\underline{p}_i, \overline{p}_i\right] \subseteq [0, 1]$ and the condition $S \subset \{1, \ldots, n\}$.
- We want to find, for each $i \in S$, the range $\left[\underline{q}_i, \overline{q}_i\right]$ of values $q_i = \frac{p_i}{\sum p_j}$ when $p_j \in \left[\underline{p}_j, \overline{p}_j\right]$ and $\sum_{j=1}^n p_j = 1$.
- Solution:

$$\begin{split} \underline{q}_i &= \frac{\underline{p}_i}{\underline{p}_i + \min\left(\sum\limits_{j \in S, \ j \neq i} \overline{p}_j, 1 - \sum\limits_{k \notin S} \underline{p}_k - \underline{p}_i\right)}; \\ \overline{q}_i &= \frac{\overline{p}_i}{\overline{p}_i + \max\left(\sum\limits_{j \in S, \ j \neq i} \underline{p}_j, 1 - \sum\limits_{k \notin S} \overline{p}_k - \overline{p}_i\right)}. \end{split}$$

Need to Process . . . How to Represent . . . How to Compute... Probabilities and . . . Interval Computation . . . Conditional . . . Quantitative . . . Quantitative . . . Mean under Interval.. Home Page Title Page **>>** Page 17 of 29 Go Back Full Screen

Close

17. Computing Conditional Probabilities: Asymptotically Optimal Algorithm

- Straightforward computations would require quadratic time: linear time for each of 2n values q_i and \overline{q}_i .
- However, we can compute these value in asymptotically optimal linear time if we first compute

$$\begin{split} \overline{P}_S &\stackrel{\text{def}}{=} \sum_{j \in S} \overline{p}_j, \underline{P}_S \stackrel{\text{def}}{=} \sum_{j \in S} \underline{p}_j, \overline{P}_{-S} \stackrel{\text{def}}{=} \sum_{k \notin S} \overline{p}_k, \underline{P}_{-S} \stackrel{\text{def}}{=} \sum_{k \notin S} \underline{p}_k : \\ \underline{q}_i &= \frac{\underline{p}_i}{\underline{p}_i + \min\left(\overline{P}_S - \overline{p}_i, 1 - \underline{P}_{-S} - \underline{p}_i\right)}; \\ \overline{q}_i &= \frac{\overline{p}_i}{\overline{p}_i + \max\left(\underline{P}_S - \underline{p}_i, 1 - \overline{P}_{-S} - \overline{p}_i\right)}. \end{split}$$

Need to Process . . . How to Represent... How to Compute... Probabilities and . . . Interval Computation . . . Conditional . . . Quantitative . . . Quantitative . . . Mean under Interval... Home Page Title Page **>>** Page 18 of 29 Go Back Full Screen Close Quit

- Let's take n = 8, $\left[\underline{p}_i, \overline{p}_i\right] = [0.1, 0.15]$, and $S = \{1, 2, 3, 4\}$.
- For $p_1 = 0.15$, $p_2 = p_3 = p_4 = 0.1$, $p_5 = p_6 = p_7 = 0.15$, and $p_8 = 0.1$, we get $q_1 = \frac{0.15}{0.15 + 0.1 + 0.1 + 0.1} = \frac{1}{3}$.
- For $p_1 = 0.1$, $p_2 = p_3 = p_4 = 0.15$, $p_5 = p_6 = p_7 = 0.1$, $p_8 = 0.15$, we get $q_1 = \frac{0.1}{0.1 + 0.15 + 0.15 + 0.15} = \frac{2}{11}$.
- So, we can have $q_1 = \frac{1}{3}$, $q_2 = \frac{1}{3}$, $q_3 = \frac{2}{11}$, and $q_4 = \frac{2}{11}$.
- However, there are no p_i for which $q_i = \frac{p_i}{p_1 + p_2 + p_3 + p_4}$.
- Indeed, due to monotonicity, the only way to have $q_1 = \frac{1}{3}$ is to have $p_1 = 0.15$ and $p_2 = p_3 = p_4 = 0.1$.
- However, $q_2 = \frac{1}{3}$ is only possible for $p_1 = 0.1 \neq 0.15$.

How to Represent...

Need to Process . . .

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative...

Quantitative . . .

Mean under Interval...

Home Page

Title Page

4 >>

Page 19 of 29

Go Back

Full Screen

Close

19. Quantitative Conditional Possibility (Interval Case): Formulation of the Problem

- We know n intervals $\left[\underline{\mu}_i, \overline{\mu}_i\right]$.
- We assume that these intervals have already been narrowed.
- We know the condition S, i.e., a set $S \subset \{1, \ldots, n\}$.
- We want to find, for each $i \in S$,
 - the range $\left[\underline{q}_i, \overline{q}_i\right]$ of possible values of the quantitative conditional possibility

$$q_i = \frac{\mu_i}{\max_{j \in S} \mu_j}$$

- when $\mu_j \in \left[\underline{\mu}_j, \overline{\mu}_j\right]$ and $\max_{1 \le j \le n} \mu_j = 1$.

• We want to find the range of $q_i = \frac{\mu_i}{\max_{j \in S} \mu_j}$ when

$$\mu_j \in \left[\underline{\mu}_j, \overline{\mu}_j\right] \text{ and } \max_{1 \le i \le n} \mu_j = 1.$$

- If the set S contains all the indices i for which $\overline{\mu}_i = 1$, then $\underline{q}_i = \underline{\mu}_i$ and $\overline{q}_i = \overline{\mu}_i$ for all $i \in S$.
- In all other cases:

$$\underline{q}_i = \frac{\underline{\mu}_i}{\max\left(\underline{\mu}_i, \max_{j \in S, \ j \neq i} \overline{\mu}_j\right)}; \quad \overline{q}_i = \frac{\overline{\mu}_i}{\max\left(\overline{\mu}_i, \max_{j \in S, \ j \neq i} \underline{\mu}_j\right)}.$$

- For each i, these formulas require n steps.
- So, a direct use of these formulas leads to a quadratictime algorithm.

Need to Process...

How to Represent...

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative...

Quantitative . . .

Mean under Interval...

Home Page

Title Page

Page 21 of 29

Go Back

Full Screen

Close

21. Asymptotically Optimal Computing of \underline{q}_i and \overline{q}_i

- If the set S contains all indices i for which $\overline{\mu}_i = 1$, then we return the values $\underline{q}_i = \underline{\mu}_i$ and $\overline{q}_i = \overline{\mu}_i$ for all $i \in S$.
- Otherwise, we compute the largest \overline{M} and the second largest \overline{S} of the values $\overline{\mu}_i$ corresponding to $j \in S$.
- We also compute the largest \underline{M} and the second largest \underline{S} of the values $\underline{\mu}_{j}$ corresponding to $j \in S$.

• If
$$\overline{\mu}_i = \overline{M}$$
, then $\underline{q}_i = \frac{\underline{\mu}_i}{\max\left(\underline{\mu}_i, \overline{S}\right)}$, else $\underline{q}_i = \frac{\underline{\mu}_i}{\max\left(\underline{\mu}_i, \overline{M}\right)}$.

- If $\underline{\mu}_i = \underline{M}$, then $\overline{q}_i = \frac{\overline{\mu}_i}{\max(\overline{\mu}_i, \underline{S})}$, else $\overline{q}_i = \frac{\overline{\mu}_i}{\max(\overline{\mu}_i, \underline{M})}$.
- \bullet We need to handle at least n input intervals.
- This algorithm is linear time O(n) and is, thus, asymptotically optimal.

Need to Process...

How to Represent...

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative . . .

Quantitative . . .

Mean under Interval...

Home Page

Title Page

Page 22 of 29

Go Back

Full Screen

Close

22. Not All Combinations of q_i Are Possible

- Let's take n = 4, $S = \{1, 2, 3\}$, $\left[\underline{\mu}_{1}, \overline{\mu}_{1}\right] = [0.1, 0.2]$, $\left[\underline{\mu}_{2}, \overline{\mu}_{2}\right] = \left[\underline{\mu}_{3}, \overline{\mu}_{3}\right] = [0.1, 0.5]$, $\left[\underline{\mu}_{4}, \overline{\mu}_{4}\right] = [1, 1]$.
- Then, $\left[\underline{q}_1, \overline{q}_1\right] = \left[\underline{q}_2, \overline{q}_2\right] = \left[\underline{q}_3, \overline{q}_3\right] = [0.2, 1].$
- Let us show that it is impossible to have $q_1 = 0.5$, $q_2 = 0.2$, and $q_3 = 1.0$.
- Indeed, since $\mu_2 \ge 0.1$ and $\max(\mu_1, \mu_2, \mu_3) \le 0.5$, we have $q_2 = \frac{\mu_2}{\max(\mu_1, \mu_2, \mu_3)} \le \frac{0.1}{0.5} = 0.2$.
- The only possibility to have $q_2 = 0.2$ is when $\mu_2 = 0.1$ and $\max(\mu_1, \mu_2, \mu_3) = 0.5$.
- In this case, since $\mu_1 \le 0.2$, we have $q_1 = \frac{\mu_1}{\max(\mu_1, \mu_2, \mu_3)} \le \frac{0.2}{0.5} = 0.4$, so $q_1 \ne 0.5$.

Need to Process...

How to Represent...

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative...

Quantitative . . .

Mean under Interval . . .

Home Page
Title Page

Page 23 of 29

Go Back

Full Screen

Tun Screen

Close

23. Qualitative Conditional Possibility (Interval Case): Formulation of the Problem

- We know n intervals $\left[\underline{\mu}_i, \overline{\mu}_i\right]$.
- We assume that these intervals have already been narrowed.
- We know the condition S, i.e., a set $S \subset \{1, \ldots, n\}$;
- We want to find, for each $i \in S$,
 - the smallest \underline{q}_i and the largest \overline{q}_i of possible values of the qualitative conditional possibility
 - when $\mu_j \in \left[\underline{\mu}_j, \overline{\mu}_j\right]$ and $\max_{1 \le j \le n} \mu_j = 1$.

24. Qualitative Conditional Possibility (Interval Case): Solution

- If the set S contains all the intervals for which $\overline{\mu}_i = 1$, then $\underline{q}_i = \underline{\mu}_j$ and $\overline{q}_j = \overline{\mu}_j$ for all j.
- Else, if $\underline{\mu}_i \geq \max_{j \in S, \ j \neq i} \overline{\mu}_j$, then $\left[\underline{q}_i, \overline{q}_i\right] = [1, 1]$.
- Else, if $\overline{\mu}_i \ge \max_{j \in S} \underline{\mu}_j$, then $\underline{q}_i = \underline{\mu}_i$ and $\overline{q}_i = 1$.
- Otherwise, $\underline{q}_i = \underline{\mu}_i$ and $\overline{q}_i = \overline{\mu}_i$.
- \bullet For each i, these formulas require n steps.
- So, a direct use of these formulas leads to a quadratictime algorithm.

Need to Process . . . How to Represent . . . How to Compute... Probabilities and . . . Interval Computation . . . Conditional . . . Quantitative . . . Quantitative . . . Mean under Interval... Home Page Title Page 44 **>>** Page 25 of 29 Go Back Full Screen Close Quit

- If the set S contains all indices i for which $\overline{\mu}_i = 1$, then we return the values $q_i = \mu_i$ and $\overline{q}_i = \overline{\mu}_i$ for all $i \in S$.
- Otherwise, we compute the maximum \underline{M} of all the values μ_i , $i \in S$.
- Then, we compute the largest \overline{M} and the second largest \overline{S} of the values $\overline{\mu}_i$ corresponding to $i \in S$.
- After that, for each $i \in S$, we do the following:
 - if $\overline{\mu}_i = \overline{M}$ and $\mu_i \geq \overline{S}$, we return $q_i = \overline{q}_i = 1$;
 - if $\overline{\mu}_i < \overline{M}$ and $\underline{\mu}_i \geq \overline{M}$, we return $\underline{q}_i = \overline{q}_i = 1$;
 - otherwise, if $\overline{\mu}_i \geq \underline{M}$, we return $q_i = \mu_i$ and $\overline{q}_i = 1$;
 - for all other $i \in S$, we return $\underline{q}_i = \underline{\mu}_i$ and $\overline{q}_i = \overline{\mu}_i$.
- This algorithm takes linear time O(n), and is, therefore, asymptotically optimal.

How to Represent...

Need to Process . . .

How to Compute...

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative . . .

Quantitative...

Mean under Interval...

Home Page

Title Page

Page 26 of 29

Go Back

Full Screen

Close

- For quantitative possibilities, all values q_i between \underline{q}_i and \overline{q}_i are possible.
- In contrast, for qualitative possibilities, many intermediate values are not possible.
- Example: $n=3,\ S=\{1,2\},\ \left[\underline{\mu}_1,\overline{\mu}_1\right]=\left[\underline{\mu}_2,\overline{\mu}_2\right]=[0,0.5]$ and $\left[\underline{\mu}_3,\overline{\mu}_3\right]=[1,1].$
- In this case, we have $q_1 = 0$ and $\overline{q}_1 = 1$.
- However, it is not possible to have $q_i = 0.6 \in [0, 1]$.
- Indeed, each value q_i coincides either with 1, or with one of the original values μ_i .

How to Represent . . . How to Compute... Probabilities and . . . Interval Computation . . . Conditional . . Quantitative . . . Quantitative . . . Mean under Interval.. Home Page Title Page **>>** Page 27 of 29 Go Back Full Screen Close Quit

- We want to find the range of $E = \sum_{i=1}^{n} p_i \cdot x_i$ when $p_i \in [\underline{p}_i, \overline{p}_i]$ and $\sum_{i=1}^{n} p_i = 1$.
- The max is attained when larger values have larger probability.
- So, if we sort x_i in increasing order $x_1 \le x_2 \le ... \le x_n$, we get $\overline{E} = \sum_{i=1}^{k-1} \underline{p}_i \cdot x_i + p_k \cdot x_k + \sum_{i=k+1}^n \overline{p}_i \cdot x_i$.
- Here, $p_k = 1 \sum_{i=1}^{k-1} \underline{p}_i \sum_{i=k+1}^n \overline{p}_i$, so $\underline{p}_k \leq p_k \leq \overline{p}_k$ implies that $\sum_{i=1}^k \underline{p}_i \sum_{i=k+1}^n \overline{p}_i \leq 1 \leq \sum_{i=1}^{k-1} \underline{p}_i \sum_{i=k}^n \overline{p}_i$.
- This enables us to find k in linear time. Since sorting is $O(n \cdot \log(n))$, we get total time $O(n \cdot \log(n))$.

How to Represent...

How to Compute...

Need to Process . . .

Probabilities and . . .

Interval Computation . . .

Conditional . . .

Quantitative...

Quantitative . . .

Mean under Interval . . .

Home Page
Title Page

()**>**

Page 28 of 29

Go Back

Full Screen

Close

28. Acknowledgments

- This work was supported in part:
 - by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence),
 - by the National Science Foundation grant DUE-0926721,
 - by Grants 1 T36 GM078000-01 and 1R43TR000173-01 from the National Institutes of Health, and
 - by grant N62909-12-1-7039 from the Office of Naval Research.
- This work was partly done when Salem Benferhat was visiting with the University of Texas at El Paso.

