Fusion of Probabilistic Knowledge as Foundation for Sliced-Normal Approach

Michael Beer¹, Olga Kosheleva², and Vladik Kreinovich²

¹Institute for Risk and Reliability, Leibniz University Hannover 30167 Hannover, Germany, beer@irz.uni-hannover.de

²University of Texas at El Paso

500 W. University, El Paso, Texas 79968, USA
sraguilar4@miners.utep.edu, olgak@utep.edu, vladik@utep.edu

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe... Every Piece of . . . The Family Should . . . Main Result Home Page **>>** Page 1 of 51 Go Back Full Screen Close Quit

- In many practical applications, it turns out to be efficient to use Sliced-Normal multi-D distributions.
- These are distributions for which log of probability density function (pdf) $f(x_1, ..., x_n)$ is a polynomial:

$$\ln(f(x_1,...,x_n)) = P(x_1,...,x_n)$$
, so $f(x_1,...,x_n) = \exp(P(x_1,...,x_n))$.

- To be more precise, log(f) is a sum of squares of several polynomials
- This class is a natural extension of:
 - normal distributions, i.e.,
 - distributions for which the logarithm of the pdf is a quadratic polynomial.

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 2 of 51 Go Back Full Screen Close Quit

2. But Why?

- The sliced-normal distributions have been empirically successful.
- However, there seems to be no convincing theoretical explanation for their empirical success.
- The main goal of this paper is to provide such an explanation.

3. Let Us Formulate This Problem in Precise Terms

- In principle, we can have many different probability density functions.
- The class of all the functions is infinite-dimensional.
- This means that:
 - to select a single probability density function out of all possible such functions,
 - we need to know the values of infinitely many parameters,
 - e.g., values of the pdf at points with rational coordinates.

4. Let Us Formulate This Problem in Precise Terms (cont-d)

- In practice, however, at any given moment of time, we only have finitely many observations.
- Based on these observations, we can determine only finitely many parameters.
- Thus, it makes sense to looks for families F of probability density functions:
 - that depend on finitely many parameters c_1, \ldots, c_m ,
 - i.e., on families of the type

$$F = \{f(x_1, \dots, x_n, c_1, \dots, c_m)\}_{c_1, \dots, c_m}.$$

But Why? The Dependence . . . The Dependence... The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 5 of 51 Go Back Full Screen Close Quit

5. The Dependence Should Be Continuous

- All our information about the physical world comes from measurements and from expert estimates.
- Measurements are never 100% accurate, expert estimates are even less accurate.
- So, we can only determine the values x_i and c_j with some accuracy:
 - based on these approximate values of x_i and c_j ,
 - we estimate of the value $f(x_1, \ldots, x_n, c_1, \ldots, c_m)$ of the pdf.
- The more accurately we perform measurements, the more accurate should be our estimates.
- So, the dependence of $f(x_1, \ldots, x_n, c_1, \ldots, c_m)$ on all its inputs x_i and c_j should be continuous.

6. The Dependence Should Be Differentiable

• Moreover, small inaccuracy in x_i and c_j should lead to proportionally small inaccuracy in the value of

$$f(x_1,\ldots,x_n,c_1,\ldots,c_m).$$

• Thus, the function $f(x_1, \ldots, x_n, c_1, \ldots, c_m)$ should be differentiable.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page 44 **>>** Page 7 of 51 Go Back Full Screen Close Quit

7. The Class of Distributions Should Be Closed Under Fusion

• We only know the *probability* of different tuples

$$x=(x_1,\ldots,x_n).$$

- This means that we do not know which of the tuples describe the corresponding real-life situation.
- In other words, the fact that we have a probabilistic knowledge means that our knowledge is incomplete.
- It is therefore desirable to gain additional knowledge about the situation:
 - either by performing additional measurements,
 - or by requesting additional expert estimates.

8. Closed Under Fusion (cont-d)

- This additional knowledge usually comes in the form of a probability distribution; once we have it:
 - we need to fuse it
 - with the distribution describing our original knowledge.
- The selected family should describe reasonably well all possible states of our knowledge.
- From this viewpoint, it is reasonable to require that:
 - if both fused pieces of knowledge are described by distributions from our family,
 - then the result of fusing these two pieces of knowledge should also belong to our family.

9. Closed Under Fusion (cont-d)

- This means that the desired family of probability distributions should be *closed* under fusion.
- To describe this requirement in precise terms, let us describe fusion in precise terms.

- - In probability theory:
 - if we have two independent events with probabilities p_1 and p_2 ,
 - then the probability that both events will happen is equal to the product of these probabilities.
 - Similarly, suppose that we have two independent sources of information, so that.
 - Based on information from Source 1, we assign:
 - to each of N alternatives a_1, \ldots, a_N
 - the probabilities $p_{1,1}, \ldots, p_{1,N}$.
 - Based on information from Source 2, we assign:
 - to each of M alternatives b_1, \ldots, b_M ,
 - the probabilities $p_{2,1}, \ldots, p_{2,M}$.

But Why?

Sliced-Normal . . .

The Dependence . . .

The Dependence . . .

The Class of . . .

How to Describe . . .

Every Piece of . . . The Family Should . . .

Main Result

Home Page

Title Page

Page 11 of 51

Go Back

Full Screen

Close

11. How to Describe Fusion (cont-d)

- Then:
 - the probability that we have alternative a_i in the first case and alternative b_i in the second case
 - is equal to the product of the corresponding probabilities $p_{1,i} \cdot p_{2,j}$.
- Sometimes, in both cases, we have the exact same set of alternatives.
- Then we need to consider *conditional* probabilities, namely probabilities under the condition that i = j.
- In general, the conditional probability $P(A \mid B)$ of an event A under the condition B can be obtained by:
 - dividing the probability P(A & B) of A & B
 - by the probability P(B) that the condition B is satisfied.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 12 of 51 Go Back Full Screen Close Quit

12. How to Describe Fusion (cont-d)

- In our case, this means that after the fusion, the probability of the *i*-th alternative is equal to $p_i = C \cdot p_{1,i} \cdot p_{2,i}$.
- The coefficient $C \stackrel{\text{def}}{=} \frac{1}{P(B)}$ can be obtained from the requirement:
 - that the resulting probabilities add up to 1,

- i.e., that
$$\sum_{i=1}^{N} p_i = C \cdot \sum_{i=1}^{N} p_{1,i} \cdot p_{2,i} = 1$$
, so that

$$C = \frac{1}{\sum_{i=1}^{N} p_{1,i} \cdot p_{2,i}}.$$

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 13 of 51 Go Back Full Screen Close Quit

13. How to Describe Fusion (cont-d)

- Similar formulas can be obtained for continuous distributions:
 - if we have two independent sources of information that lead to distributions $f_1(x)$ and $f_2(x)$,
 - then the fusion of these two pieces of information is a probability distribution $f(x) = C \cdot f_1(x) \cdot f_2(x)$.
- \bullet Here C is a normalization constant.
- Similarly, we can define the result of fusing several probability distributions as $f(x) = C \cdot f_1(x) \cdot \ldots \cdot f_k(x)$.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe... Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 14 of 51 Go Back Full Screen Close Quit

14. Every Piece of Knowledge Can Be Obtained by Fusing "Smaller" Pieces of Information

- Sometimes, knowledge comes in one big step.
- However, more typically, to gain the knowledge, we must acquire it piece by piece.
- Sometimes it comes in two steps, sometimes in three steps, sometimes in four steps, etc.
- So, it is natural to come up with the following definition.
- We say that in a family f(x,c), every piece of knowledge can be obtained by fusing if
 - for every pdf f(x,c) from this family and for every integer $M \geq 2$,
 - there exists another pdf f(x, c') from this family so that fusing M copies of f(x, c') leads to f(x, c).

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 15 of 51 Go Back Full Screen Close Quit

15. The Family Should Not Depend on the Starting Point and Measuring Unit

- We want to deal with physical quantities, but in reality, we deal with their numerical values.
- These numerical values depend on:
 - what measuring unit we use for measuring the quantity, and
 - what starting point we select for this measurement.
- When we change the measuring unit and/or the starting point, the numerical values change; e.g.:
 - if we change the measuring unit from meters to centimeters,
 - all the numerical values are multiplied by 100, so that, 2 m becomes 200 cm.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 16 of 51 Go Back Full Screen Close Quit

16. The Family Should Not Depend on the Starting Point and Measuring Unit (cont-d)

- In general:
 - if we change from the original measuring unit to a new one which is a times smaller,
 - then all the numerical values are multiplied by a:

$$x \to a \cdot x$$
.

- This transformation is known as *scaling*.
- Similarly, we can change the starting point to the one which is b units before.
- We can do it for time, temperature, and many other quantities.
- Then b is added to all the numerical values $x \to x + b$.
- \bullet This transformation is known as *shift*.

Sliced-Normal . . . But Why? The Dependence . . . The Dependence... The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 17 of 51 Go Back Full Screen Close

Sliced-Normal . . . But Why? • A shift can also be viewed as a kind of re-scaling. The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page 44 Page 18 of 51 Go Back Full Screen Close

>>

17. The Family Should Not Depend on the Starting Point and Measuring Unit (cont-d)

- If we change both the measuring unit and the starting point, then numerical values change as $x \to a \cdot x + b$.
- These transformations change the pdf $f(x_1, \ldots, x_n)$:
 - if we apply such transformation $x_i \to x_i' \stackrel{\text{def}}{=} a_i \cdot x_i + b_i$ to each of inputs,
 - then in terms of the new numerical values x'_1, \ldots, x'_n , the pdf takes a different form:

$$f'(x'_1, \dots, x'_n) = \frac{1}{\prod_{i=1}^n a_i} \cdot f\left(\frac{x'_1 - b_1}{a_1}, \dots, \frac{x'_n - b_n}{a_n}\right).$$

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 19 of 51 Go Back Full Screen Close Quit

18. The Family Should Not Depend on the Starting Point and Measuring Unit (cont-d)

- We want to come up with a universal family of probability distributions.
- This family should be applicable no matter what measuring units and what starting points we select.
- Thus, it is reasonable to require that our family is invariant w.r.t. the corresponding transformations.
- We say that a family F is scale- and shift-invariant if:
 - every pdf f(x,c) from this family and for every two tuples a and b,
 - the (a, b)-re-scaling of the pdf f(x, c) also belongs to the family F.

19. Main Result

- Let F be a differentiable family f(x,c):
 - which is closed under fusion,
 - for which every piece of knowledge can be obtained by fusing small pieces of information, and
 - which is scale- and shift-invariant.
- Then, there exists an integer $d \leq m+1$ such that:
 - every probability density function from this family has the form $f(x,c) = \exp(P(x_1,\ldots,x_n))$,
 - where $P(x_1, \ldots, x_n)$ is a polynomial of degree $\leq d$ with respect to each of its variables.
- This result explains the empirical success of slicednormal distributions.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe... Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 21 of 51 Go Back Full Screen Close Quit

- ullet Let F be the family that satisfies all the conditions described in the formulation of our result.
- By a log-function, we will mean a function of the type $L(x, c, s) = \ln(f(x, c)) + s$ for some c and s.
- Let us denote the class of all log-functions by \mathcal{L} .
- Let us prove that the class of all log-functions is closed under addition, i.e., that:
 - for every two log-functions

$$L(x, c; s')$$
 and $L(x, c'', s'')$,

- their sum is also a log-function.
- Indeed, by definition, $L(x, c', s') = \ln(f(x, c')) + s'$ and $L(x, c'', s'') = \ln(f(x, c'')) + s''$.

Sliced-Normal . . .

But Why?

The Dependence...

The Dependence...

The Class of . . .

How to Describe...

The Family Should...

Main Result

Home Page

Title Page

Page 22 of 51

Go Back

Full Screen

Close

• Since the family F is closed under fusion, the result of fusing the corresponding pdfs is also a pdf from F:

$$C \cdot f(x, c') \cdot f(x, c'') = f(x, c)$$
 for some tuple c.

• By taking logarithms of both sides of this equality, we conclude that

$$\ln(C) + \ln(f(x, c')) + \ln(f(x, c'')) = \ln(f(x, c)).$$

• If we add $s' + s'' - \ln(C)$ to both sides of the resulting equality, we conclude that

$$(\ln(f(x,c')) + s') + (\ln(f(x,c'')) + s'') = \ln(f(x,c)) + (s' + s'' - \ln(C)).$$

Sliced-Normal . . .

But Why?

The Dependence...

The Dependence...
The Class of...

How to Describe...

Every Piece of . . .

The Family Should . . .

Main Result

Home Page

Title Page

>>

Page 23 of 51

Go Back

Full Screen

Close

22. Proof: Part 1 (cont-d)

• So, the sum of the two given log-functions is indeed a log-function:

$$L(x, c', s') + L(x, c'', s'') = L(x, c, s' + s'' - \ln(C)).$$

• The statement is proven.

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page 44 **>>** Page 24 of 51 Go Back Full Screen Close Quit

- Let us now prove that:
 - for each log-function L(x, c, s) and for every integer $M \geq 2$,
 - the function $M^{-1} \cdot L(x,c,s)$ is also a log-function.
- By definition, $L(x, c, s) = \ln(f(x, c)) + s$.
- For the family F, every piece of knowledge can be obtained by fusing small pieces of information.
- So, the pdf f(x,c) can be obtained by fusing M instances of some other pdf f(x,c'):

$$f(x,c) = C \cdot (f(x,c'))^{M}.$$

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page 44 **>>** Page 25 of 51 Go Back Full Screen Close

- We have $f(x,c) = C \cdot (f(x,c'))^M$.
- By taking logarithms of both sides of this equality, we get $\ln(f(x,c)) = M \cdot \ln(f(x,c')) + \ln(C)$, thus

$$M^{-1} \cdot \ln(f(x,c)) = \ln(f(x,c')) + M^{-1} \cdot \ln(C).$$

• By adding $M^{-1} \cdot s$ to both sides, we get

$$M^{-1} \cdot (\ln(f(x,c)) + s) =$$

$$\ln(f(x,c')) + M^{-1} \cdot (\ln(C) + s).$$

• The left-hand side of this formula is exactly

$$M^{-1} \cdot L(x,c,s)$$
.

- So, it is indeed a log-function.
- The statement is proven.

But Why?

Sliced-Normal . . .

The Dependence . . .

The Dependence . . .

The Class of . . .

How to Describe . . .

Every Piece of . . . The Family Should . . .

Main Result

Home Page

Title Page

Go Back

Full Screen

Close

- Let us now consider the closure \mathcal{C} of the set \mathcal{L} of all log-functions:
 - the closure in the usual topological sense, i.e.,
 - the set of all limit functions with respect to some natural topology on the class of all functions.
- Since the set \mathcal{L} is closed under addition, its closure \mathcal{C} is also closed under addition.
- Let us prove that this closure is closed under multiplication by positive numbers.
- In other words, let us prove that:
 - for each function $f(x) \in \mathcal{C}$ and for every positive real number r > 0,
 - the function $r \cdot f(x)$ also belongs to C.

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe... Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 27 of 51 Go Back Full Screen Close

26. Proof: Part 3 (cont-d)

- ullet Since $\mathcal C$ is the closure of the set of all log-functions, it is sufficient to prove that:
 - for each log-function L(x, c, s) and for every positive real number r > 0,
 - the function $r \cdot L(x, c, s)$ is a limit of log-functions.
- Indeed, for every possible accuracy $\varepsilon > 0$:
 - we can approximate, with this accuracy,
 - the real number r by a rational number $\frac{N}{M}$.
- By Part 2 of this proof, the function $M^{-1} \cdot L(x, c, s)$ is also a log-function.

27. Proof: Part 3 (cont-d)

- Now, by Part 1 of this proof:
 - the function $\frac{N}{M} \cdot L(x, c, s)$ is also a log-function,
 - as the sum of N log-functions $M^{-1} \cdot L(x, c, s)$.
- When $\frac{N}{M}$ tends to r, the corresponding function $\frac{N}{M} \cdot L(x, c, s)$ tends to $r \cdot L(x, c, s)$.
- Thus, the function $r \cdot L(x, c, s)$ is indeed a limit of logfunctions.
- The statement is proven.

- By combining Parts 1 and 3, we conclude that:
 - for every finite set of functions $C_1(x), \ldots, C_k(x)$ from the set C, and
 - for every tuple of positive numbers r_1, \ldots, r_k ,
 - the linear combination $r_1 \cdot C_1(x) + \ldots + r_k \cdot C_k(x)$ also belongs to C.
- Let us prove that the set C cannot contain more than m+1 linearly independent functions; indeed:
 - if this was the case, and we would have more than m+1 linearly independent functions,
 - then we would have at least m+2 of them $C_1(x), \ldots, C_{m+2}(x)$ in the class C.
- Then, the class C will contain a (m+2)-parametric family of functions $r_1 \cdot C_1(x) + \ldots + r_{m+2} \cdot C_{m+2}(x)$.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 30 of 51 Go Back Full Screen Close

Quit

29. Proof: Part 4 (cont-d)

- However, the class C is the closure of the class L of functions of the type $\ln(f(x,c)) + s$.
- This class depends on m+1 parameters:
 - we have m parameters c_1, \ldots, c_m and
 - we have an additional parameter s.
- So, the closure of this set is also of dimension m+1 (or less).
- Thus, cannot contain more-dimensional subfamilies.
- The statement is proven.

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 31 of 51 Go Back Full Screen Close Quit

- Let us denote by S the class of all linear combinations of functions from the class C.
- Clearly, $C \subseteq S$.
- Due to Part 4, the dimension d of the linear space S cannot exceed m + 1; so:
 - if we pick any basis $e_1(x), \ldots, e_d(x)$ in this class,
 - then each function $f(x) \in \mathcal{S}$ can be represented as

$$f(x) = C_1 \cdot e_1(x) + \ldots + C_d \cdot e_d(x).$$

- We can pick the basis from the set C; moreover:
 - since the closure does not change the dimension,
 - we can pick this basis from the original class \mathcal{L} of log-functions.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page 44 **>>** Page 32 of 51 Go Back Full Screen Close Quit

31. Proof: Part 5 (cont-d)

- \bullet All the pdf functions from the family F are, by our assumption, differentiable.
- Thus, every log-function is also differentiable.
- Hence, we can choose the basis of differentiable functions.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 33 of 51 Go Back Full Screen Close Quit

32. Proof: Part 6

- Let us prove that the class \mathcal{L} is closed under arbitrary re-scalings, i.e.:
 - if a function $f(x_1, \ldots, x_n)$ is in this class,
 - then for each tuple $a = (a_1, \ldots, a_n)$ of positive numbers and for each tuple $b = (b_1, \ldots, b_n)$ of real numbers, the function $f(a \cdot x_1 + b_1, \ldots, a_n \cdot x_n + b_n)$ also belongs to the class \mathcal{L} .
- This follows:
 - from the requirement that the family F is scaleand shift-invariant,
 - if we take logarithms of both sides and add appropriate constants to both sides.
- \bullet From this, we can conclude that the closure class $\mathcal C$ is also invariant with respect to arbitrary re-scalings.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe... Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 34 of 51 Go Back Full Screen Close Quit

- ullet So, the class $\mathcal S$ of all linear combinations of functions from $\mathcal C$ is also thus invariant.
- Let us first study the consequences of shift-invariance of the class S with respect to the first variable.
- This shift-invariance implies, in particular, that:
 - for each basis function $e_i(x_1, x_2, \dots, x_n)$,
 - the result of its shift $e_i(x_1 + b_1, x_2, ..., x_n)$ is also a function from \mathcal{S} , i.e., for some C_{ij} :

$$e_i(x_1+b_1,x_2,\ldots,x_n) = \sum_{j=1}^a C_{ij}(b_1) \cdot e_j(x_1,x_2,\ldots,x_n).$$

• For a while, let us fix the values x_2, \ldots, x_n and only consider the dependence on x_1 .

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 35 of 51 Go Back Full Screen Close

$$E_i(x_1) \stackrel{\text{def}}{=} e_i(x_1, x_2, \dots, x_n).$$

• For these auxiliary functions, the above formula takes the form

$$E_1(x_1+b_1)=C_{11}(b_1)\cdot E_1(x_1)+\ldots+C_{1d}(b_1)\cdot E_d(x_1);$$

. . .

$$E_d(x_1 + b_1) = C_{d1}(b_1) \cdot E_1(x_1) + \ldots + C_{dd}(b_1) \cdot E_d(x_1).$$

- Here, all the functions $E_1(x_1) \dots, E_d(x_1)$ are differentiable since:
 - they come by fixing some values from the basis functions $e_i(x_1, \ldots, x_n)$, and
 - the basis functions are differentiable.

Sliced-Normal...
But Why?

The Dependence . . .

The Dependence...

The Class of . . .

How to Describe...

Every Piece of...

The Family Should...

Main Result

ani Nesuit

Home Page

Title Page

Go Back

Full Screen

Close

• Indeed, for each i, let us pick d different values $x_{1,1}, \ldots, x_{1,d}$ of x_1 .

• Then we get the following d linear equations for d unknowns $C_{i1}(b_1), \ldots, C_{in}(b_1)$:

$$E_i(x_{1,1}+b_1) = C_{i1}(b_1) \cdot E_1(x_{1,1}) + \ldots + C_{id}(b_1) \cdot E_d(x_{1,1});$$

. . .

$$E_i(x_{1,d}+b_1)=C_{i1}(b_1)\cdot E_1(x_{1,d})+\ldots+C_{id}(b_1)\cdot E_d(x_{1,d}).$$

- Each element $C_{ij}(b_1)$ of the solution to a system of linear equations can be described, by the Cramer rule:
 - as the ratio of two determinants, i.e.,
 - as a smooth function of all the coefficients.

Sliced-Normal...
But Why?

The Dependence...

The Dependence . . .

The Class of . . .

How to Describe . . .

Every Piece of . . .

The Family Should . . .

Main Result

Home Page

Title Page

Page 37 of 51

Go Back

Full Screen

Close

- The coefficients $E_i(x_{1,k} + b_1)$ smoothly depend on b_1 .
- So, we conclude that the solutions $C_{ij}(b_1)$ are also differentiable functions of b_1 .
- Since all the functions $E_i(x_1)$ and $C_{ij}(b_1)$ are differentiable, we can:
 - differentiate both sides of all equalities describing $E_i(x_1 + b_1)$ with respect to b_1 ,
 - and take $b_1 = 0$.
- Then, we get the following system of equations:

$$E'_1(x_1) = c_{11} \cdot E_1(x_1) + \ldots + c_{1d} \cdot E_d(x_1);$$

 $E'_{d}(x_1) = c_{d1} \cdot E_1(x_1) + \ldots + c_{dd} \cdot E_d(x_1).$

• Here, $E'_i(x_1)$ denotes the derivative, and $c_{ij} \stackrel{\text{def}}{=} C'_{ij}(0)$.

But Why?

Sliced-Normal . . .

The Dependence...

The Dependence...

The Class of . . .

How to Describe...

The Family Should . . .

Main Result

Home Page

Title Page

()

←

Page 38 of 51

Go Back

Full Screen

Close

37. Proof: Part 6 (cont-d)

- In other words:
 - for the functions $E_1(x), \ldots, E_d(x)$,
 - we get a system of linear differential equations with constant coefficients.
- It is known that a general solution to such system of equations is a linear combination
 - of functions of the type $x_1^k \cdot \exp((p+i\cdot q)\cdot x_1)$, i.e.,
 - functions of the type $x_1^k \cdot \exp(p \cdot x_1) \cdot \cos(q \cdot x_1)$ and $x_1^k \cdot \exp(p \cdot x_1) \cdot \sin(q \cdot x_1)$.

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe... Every Piece of . . . The Family Should . . . Main Result Home Page Title Page 44 **>>** Page 39 of 51 Go Back Full Screen Close Quit

Sliced-Normal . . .

38. Proof: Part 6 (cont-d)

- Here:
 - the values $p + i \cdot q$ are eigenvalues of the matrix c_{ij} ,
 - and k is a non-negative integer corresponding to duplicate eigenvalues.
- For a $d \times d$ matrix, the multiplicity of an eigenvalue cannot exceed d, so $k \leq d$.

- Let us now study the consequences of *scale*-invariance of the class S with respect to the first variable.
- This scale-invariance implies, in particular, that:
 - for each basis function $e_i(x_1, x_2, \dots, x_n)$,
 - the result of its re-scaling $e_i(a_1 \cdot x_1, x_2, \dots, x_n)$ is also a function from S, i.e., for some D_{ij} :

$$e_i(a_1 \cdot x_1, x_2, \dots, x_n) = \sum_{j=1}^d D_{ij}(a_1) \cdot e_j(x_1, x_2, \dots, x_n).$$

• Thus:

$$E_1(a_1 \cdot x_1) = D_{11}(a_1) \cdot E_1(x_1) + \ldots + D_{1d}(a_1) \cdot E_d(x_1);$$

. . .

$$E_d(a_1 \cdot x_1) = D_{d1}(a_1) \cdot E_1(x_1) + \ldots + D_{dd}(a_1) \cdot E_d(x_1).$$

But Why?

Sliced-Normal . . .

The Dependence...

The Dependence...

The Class of . . .

How to Describe . . .

Every Piece of . . .

The Family Should . . .

Main Result

ani ilesuit

Home Page

Title Page

>>

Page 41 of 51

Go Back

Full Commun

Full Screen

Close

Close

40. Proof: Part 7 (cont-d)

- Similarly to Part 6, we can prove that the dependencies $D_{ij}(a_1)$ are also differentiable.
- By differentiating both sides of the above equations with respect to a_1 and taking $a_1 = 1$, we conclude that

$$x_1 \cdot E'_1(x_1) = d_{11} \cdot E_1(x_1) + \ldots + d_{1d} \cdot E_d(x_1);$$

. . .

$$x_1 \cdot E'_d(x_1) = d_{d1} \cdot E_1(x_1) + \ldots + d_{dd} \cdot E_d(x_1).$$

• In each equation, the left-hand side $x_1 \cdot \frac{dE_i}{dx_1}$ can be reformulated as $\frac{dE_i}{dx_1/x_1} = \frac{dE_i}{d(\ln(x_1))}$.

Sliced-Normal.. But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 42 of 51 Go Back Full Screen Close Quit

41. Proof: Part 7 (cont-d)

• Thus, for $X_1 \stackrel{\text{def}}{=} \ln(x_1)$, we get the system of linear differential equations with constant coefficients:

$$\frac{dE_1}{dX_1} = d_{11} \cdot E_1(X_1) + \ldots + d_{1d} \cdot E_d(X_1);$$

. .

$$\frac{dE_d}{dX_1} = d_{d1} \cdot E_1(X_1) + \ldots + d_{dd} \cdot E_d(X_1).$$

• We already know that a general solution to this equation is a linear combination of functions

$$X_1^k \cdot \exp(p \cdot X_1) \cdot \cos(q \cdot X_1)$$
 and $x_1^k \cdot \exp(p \cdot X_1) \cdot \sin(q \cdot X_1)$.

Sliced-Normal.. But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 43 of 51 Go Back Full Screen Close Quit

42. Proof: Part 7 (cont-d)

• Let us substitute $X_1 = \ln(x_1)$ into these formulas and take into account that

$$\exp(p \cdot \ln(x_1)) = (\exp(\ln(x_1))^p = x_1^p.$$

• We conclude that a general solution is a linear combination of functions

$$(\ln(x_1))^k \cdot x_1^p \cdot \cos(q \cdot \ln(x_1)) \text{ and}$$
$$(\ln(x_1))^k \cdot x_1^p \cdot \sin(q \cdot \ln(x_1)).$$

Sliced-Normal . . . But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page 44 **>>** Page 44 of 51 Go Back Full Screen Close

43. Proof: Part 8

- From Parts 7 and 8, we get two different expressions for the functions $E_i(x_1)$.
- By comparing these expressions, one can easily see that:
 - the only functions that can be described in both forms
 - are functions of the form x^k for some non-negative integer $k \leq d$
 - or their linear combinations.
- So, each function $E_i(x_1)$ is a linear combination of such functions i.e., a polynomial.

- We have shown that for each combination of values of x_2, \ldots, x_n :
 - the dependence of each function $e_i(x_1, x_2, ..., x_n)$ on x_1
 - can be described by a polynomial of degree $\leq d$.
- Similarly, we can prove that:
 - for each combination of values x_1, x_3, \ldots, x_n ,
 - the dependence on x_2 is also described by a polynomial.
- Let us combine these two conclusions and prove that for all possible values of x_3, \ldots, x_n :
 - the dependence of $e_i(x_1, x_2, x_2, \dots, x_n)$ on x_1 and on x_2
 - can be described by a polynomial of two variables.

Sliced-Normal...
But Why?

The Dependence...

The Dependence...

The Class of . . .

How to Describe...

Every Piece of . . .

The Family Should . . .

Main Result

iaiii Nesuit

Home Page

Title Page

Page 46 of 51

Go Back

Full Screen

Close

- Indeed, let us denote $T(x_1, x_2) \stackrel{\text{def}}{=} e_i(x_1, x_2, x_3, \dots, x_n)$.
- We know that:
 - for each x_2 , this expression is a polynomial is x_1 , and
 - for each x_1 , this expression is a polynomial is x_2 .
- Let us prove that $T(x_1, x_2)$ is a polynomial of two variables.
- Indeed:
 - the fact that the dependence of e_i on x_1 can be described by a polynomial of order $\leq d$
 - can be rewritten, in terms of $T(x_1, x_2)$, as:

$$T(x_1, x_2) = a_0(x_2) + a_1(x_2) \cdot x_1 + \ldots + a_d(x_2) \cdot x_1^d.$$

But Why?

Sliced-Normal . . .

The Dependence . . .

The Dependence...

The Class of . . .

How to Describe...

Every Piece of...

The Family Should...

Main Result

Home Page

Title Page

Page 47 of 51

Go Back

Full Screen

Close

- In writing this expression, we took into account that, in general:
 - for different values of x_2 ,
 - the coefficients a_0, \ldots, a_d of this polynomial may be different.
- Let us substitute d_1 different values $x_{1,0}, \ldots, x_{1,d}$ of x_1 into this formula.
- As a result, we have d+1 linear equations for d+1 unknowns $a_0(x_2), \ldots, a_d(x_2)$, with constant coefficients:

$$T(x_{1,0}, x_2) = a_0(x_2) + a_1(x_2) \cdot x_{1,0} + \ldots + a_d(x_2) \cdot x_{1,0}^d;$$

$$T(x_{1,d}, x_2) = a_0(x_2) + a_1(x_2) \cdot x_{1,d} + \ldots + a_d(x_2) \cdot x_{1,d}^d.$$

Sliced-Normal . . . But Why?

The Dependence . . .

The Dependence . . .

The Class of . . .

How to Describe . . .

Every Piece of . . . The Family Should . . .

Main Result

Home Page

Title Page

Page 48 of 51

Go Back

Full Screen

Close

47. Proof: Part 8 (cont-d)

- In general:
 - each component in a solution to a system of linear equations
 - is a linear combination of the right-hand sides.
- The right-hand sides $T(x_{1,i}, x_2)$ are polynomials of x_2 .
- Thus, each coefficient $a_i(x_2)$ is a linear combination of polynomials thus, a polynomial itself.
- All the expressions $a_i(x_2)$ are polynomials.
- Thus, the whole above expression for $T(x_1, x_2)$ becomes a polynomial in two variables x_1 and x_2 .

But Why? The Dependence . . . The Dependence . . . The Class of . . . How to Describe . . . Every Piece of . . . The Family Should . . . Main Result Home Page Title Page **>>** Page 49 of 51 Go Back Full Screen Close Quit

Sliced-Normal . . .

- By adding variables one by one, we can prove that the dependence of each basis function $e_i(x_1,\ldots,x_n)$:
 - on x_1 , x_2 , and x_3 is a polynomial,
 - **-** . . .
 - on all n variables x_1, \ldots, x_n is a polynomial.
- Thus, each element of S which is a linear combination of the basis functions – is also a polynomial.
- For each tuple c, the function $\ln(f(x,c))$ belongs to the class $\mathcal{L} \subseteq \mathcal{S}$ and is, thus, also a polynomial.
- So, indeed, each pdf f(x,c) from the family F has the form $\exp(P(x_1,\ldots,x_n))$ for some polynomial

$$P(x_1,\ldots,x_n).$$

• Our main result is proven.

But Why?

Sliced-Normal . . .

The Dependence . . .

The Dependence . . .

The Class of . . .

How to Describe . . . Every Piece of . . .

The Family Should . . .

Main Result

Home Page Title Page

Page 50 of 51

Go Back

Full Screen

Close

49. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science);
- HRD-1834620 and HRD-2034030 (CAHSI Includes).

It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.

