Why Ellipsoids in Mechanical Analysis of Wood Structures

F. Niklas Schietzold¹, Julio Urenda^{2,3}, Vladik Kreinovich³, Wolfgang Graf¹, and Michael Kaliske¹

¹Institute for Structural Analysis, Technische Universität Dresden 01062 Dresden, Germany {niklas.schietzold, wolfgang.graf, michael.kaliske}@tu-dresden.de ^{2,3}Departments of ²Mathematical Sciences and ³Computer Science University of Texas at El Paso, 500 W. University El Paso, Texas 79968, USA, jcurenda@utep.edu, vladik@utep.edu

Formulation of the . . . Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page **>>** Page 1 of 47 Go Back Full Screen Close Quit

1. Formulation of the Problem

- Many constructions are made of wood.
- Wood is one of the oldest materials used in construction.
- During the past millennia, people have developed a lot of skills for working with wood.
- However, in spite of this experience, wood remains one of the most difficult materials to handle.
- The main reason for this difficulty is that:
 - in contrast to many other construction materials which are mostly homogeneous and isotropic,
 - wood is highly inhomogeneous and anisotropic.

- At each point in the wooden beam:
 - both the average values and fluctuations of the local mechanical properties
 - depend on whether the direction is longitudinal, radial or tangential with respect to the grain.
- In designing wooden constructions, it is important:
 - to properly describe and to properly take into account
 - this inhomogeneity and anisotropy.
- How can we describe local fluctuations of mechanical characteristics?
- These fluctuations are caused by many different relatively small factors.

- It is known that the distribution of the joint effect of a large number of small factors is close to Gaussian.
- This follows from the Central Limit Theorem, according to which:
 - this distribution tends to Gaussian
 - when the number of factors increases.
- To describe a Gaussian distribution, it is sufficient to describe its first and second moments.
- For a general random field f(x), this means that we need to describe:
 - its mean values E[f(x)] (where $E[\cdot]$ denotes the expected value) and
 - its covariances $E[f(x) \cdot f(y)]$.

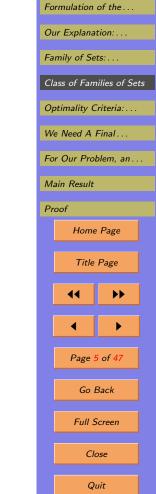
- For fluctuations, the mean is 0, so we only need to describe covariances.
- In statistics, it is often convenient:
 - instead of explicitly describing covariances,
 - to describe the standard deviations and correlations:

$$\sigma[f(x)] \stackrel{\text{def}}{=} \sqrt{E[(f(x)^2]; \ \rho(x,y) \stackrel{\text{def}}{=} \frac{E[f(x) \cdot f(y)]}{\sigma[f(x)] \cdot \sigma[f(y)]}}.$$

• Then, covariances can be reconstructed as

$$E[f(x) \cdot f(y)] = \sigma[f(x)] \cdot \sigma[f(y)] \cdot \rho(x, y).$$

• An interesting property of the corresponding correlation functions was recently empirically found.



- This property is about:
 - iso-correlation surfaces corresponding to each spatial location x,
 - i.e., surfaces formed by all the points y for which the correlation $\rho(x,y)$ is equal to a constant ρ_0 .
- Empirical analysis shows that:
 - for each point x,
 - the corresponding surfaces are well approximated by concentric homothetic ellipsoids.
- This property helps narrow down possible functions $\rho(x,y)$ when we analyze mechanical properties of wood.
- Thus, it has a potential to make mechanical analysis of wooden structures more efficient.

- The problem is that so far, this property was purely empirical, it had no theoretical justification.
- Thus, engineers were reluctant to use it.
- It is known that sometimes:
 - empirical properties found under some conditions
 - do not work well when conditions change.
- We want to make this property more reliable and thus, more practically useful.
- It is therefore desirable to come up with a theoretical explanation.
- In this talk, we provide a desired theoretical explanation for this empirical fact.

7. Our Explanation: Main Idea

- We show that there exists the smallest dimension d for which:
 - it is possible to have an affine-invariant optimality criterion
 - on the space of all such d-dimensional classes.
- We also show that for any such criterion, the optimal family consists of concentric homothetic ellipsoids.
- Thus, such families of ellipsoids provide the optimal approximation to the actual surfaces:
 - at least in the *first* approximation, i.e.,
 - approximation corresponding to the smallest possible number of parameters.

- \bullet For each spatial point x, we would like to describe:
 - for each possible value ρ_0 of the correlation $\rho(x,y)$,
 - the set $S_{\rho_0}(x) = \{y : \rho(x, y) \ge \rho_0\}.$
- What are the natural properties of these families of sets?
- The first property is coverage.
- For each y, there is some value of $\rho(x,y)$.
- So for this x, the union of all these sets $S_{\rho_0}(x)$ coincides with the whole space.
- The second property is monotonicity.
- If $\rho(x,y) \ge \rho_0$ and $\rho_0 \ge \rho'_0$, then $\rho(x,y) \ge \rho'_0$.
- So, the sets $S_{\rho_0}(x)$ should be inclusion-monotonic:

if
$$\rho_0 \leq \rho'_0$$
, then $S_{\rho'_0}(x) \subseteq S_{\rho_0}(x)$.

Formulation of the...

Our Explanation:...

Family of Sets: . . .

Class of Families of Sets

Optimality Criteria: . . .
We Need A Final . . .

For Our Problem, an...

Main Result

Proof

Home Page

Title Page

(4 **)**

4

Page 9 of 47

Go Back

Full Screen

Close

Quit

9. Family of Sets (cont-d)

- The third property is boundedness.
- From the physical viewpoint:
 - the further away is the point y from the point x,
 - the less the physical quantities corresponding to these points are correlated.
- As the distance increases, this correlation should tend to 0.
- Thus, each set $S_{\rho_0}(x)$ is bounded.
- The fourth property is continuity.
- In physics:
 - most processes are continuous,
 - with the exception of processes like fracturing, which we do not consider here.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 10 of 47 Go Back Full Screen Close Quit

10. Family of Sets (cont-d)

- We can therefore conclude that the correlation $\rho(x,y)$ continuously depends on y, so:
 - if we have $\rho(x, y_n) \ge \rho_0$ for some sequence of points y_n that converges to a point $y(y_n \to y)$,
 - then we should have $\rho(x,y) = \lim_{n \to \infty} \rho(x,y_n) \ge \rho_0$.
- Thus, if $y_n \in S_{\rho_0}(x)$ and $y_n \to y$, then $y \in S_{\rho_0}(x)$.
- So, each set $S_{\rho_0}(x)$ is closed.
- Similarly, it is reasonable to conclude that the set $S_{\rho_0}(x)$ should continually depend on ρ_0 :
 - if the two values ρ_0 and ρ'_0 are close,
 - then the corresponding sets $S_{\rho_0}(x)$ and $S_{\rho'_0}(x)$ should also be close.
- A natural way to describe closeness between (bounded closed) sets is to use the so-called Hausdorff distance.

Formulation of the . . . Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 11 of 47 Go Back Full Screen Close Quit

- We say that the sets A and B are ε -close if:
 - every point $a \in A$ is ε -close to some point $b \in B$, i.e., $d(a,b) \leq \varepsilon$, and
 - every point $b \in B$ is ε -close to some point $a \in A$.
- The Hausdorff distance $d_H(A, B)$ is defined as the smallest ε for which the sets A and B are ε -closed.
- It can be shown that this distance can be equivalently defined as follows:

$$d_H(A, B) = \max \left(\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right), \text{ where}$$

$$d(a, B) \stackrel{\text{def}}{=} \inf_{b \in B} d(a, b).$$

- What is the set of possible values of the parameter?
- In this family of sets, correlation value is a parameter.

Formulation of the...

Our Explanation:...

Family of Sets: . . .

Class of Families of Sets

Optimality Criteria: . . .

We Need A Final . . .

For Our Problem, an . . .

Main Result

Proof

Home Page

Title Page

Go Back

Full Screen

Close

Quit

12. Family of Sets (cont-d)

- Correlations can take any value from -1 to 1.
- When y = x, the correlation is clearly equal to 1.
- When $y \to \infty$, we get values close to 0.
- Since the function $\rho(x,y)$ is continuous, this function takes all intermediate values.
- So, the possible values of the correlation form some interval.
- In some cases, we may have all possible negative values.
- In other cases, only some negative values, in yet other cases, we only have non-negative values.
- So, in general, we will consider all possible intervals of possible value of ρ_0 .
- This interval may be closed if there are points with limit correlation, or is can be open.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 13 of 47 Go Back Full Screen Close Quit

13. Definition

- So, we arrive at the following definition.
- Let $N \geq 2$ be an integer.
- \bullet Let I be an interval.
- By a family of sets, we mean a set $\{S_c : c \in I\}$ of bounded closed sets $S_c \subseteq \mathbb{R}^N$ for which:
 - the dependence of S_c on c is continuous: if $c_n \to c$, then $d_H(S_{c_n}, S_c) \to 0$;
 - the family S_c is monotonic: if c < c', then $S_{c'} \subseteq S_c$; and
 - the union of all the sets S_c coincides with the whole space.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final . . . For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 14 of 47 Go Back Full Screen Close Quit

14. Comments

- According to this definition, the family remains the same if we simply re-parameterize the family.
- For example:
 - instead of the original parameter c,
 - we can use a new parameter $c' = c + c_0$ or $c' = \lambda \cdot c$ for some constants c_0 and λ .
- In our specific problem, we are interested in the 3-D case N=3.
- However, we can envision similar problem in the plane N=2 or in higher-dimensional spaces.
- So, in this talk, we consider the general case $N \geq 2$.

15. Comments (cont-d)

- We are specifically interested:
 - in concentric homothetic families of ellipsoids, i.e.,
 - in families of the type $S_c = c \cdot E + a$, where a is a given vector, and E is an ellipsoid with center 0.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final . . . For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 16 of 47 Go Back Full Screen Close Quit

16. Class of Families of Sets

- For different situation, in general:
 - we get different correlations and thus,
 - we get different families of sets.
- We would like to find a general class of such families that would, ideally, cover all such situations.
- We can use different parameters to differentiate different families from this class.
- In other words, a class can be described as a method for assigning:
 - to each possible combination of values of these parameters,
 - a specific family.
- As before, it makes sense to require that the resulting mapping is continuous.

17. Class of Families of Sets (cont-d)

- Here is a precise definition.
- Let $N \ge 2$ and r > 0 be integers.
- By an r-parametric class of families of sets, we mean a mapping that assigns,
 - to each element $p = (p_1, \ldots, p_r)$ from an open rdimensional set $D \subseteq \mathbb{R}^r$,
 - a family $\{S_c(p)\}$ so that the dependence of $S_c(p)$ on c and p is continuous.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 18 of 47 Go Back Full Screen Close Quit

18. Optimality Criteria: General Idea

- Out of all possible classes, we want to select a class which is, in some reasonable sense, optimal.
- For this, we need to be able to describe when some classes are better than others.
- In other words, we need to have an *order* on the set of all the classes.
- It would be nice to have a *total* (*linear*) order, in the sense that:
 - for every two classes,
 - we should be able to tell which one is better.
- However, it may be sufficient to have a *partial* order as long as this order enables us to select the best class.
- It is OK if for some not-best classes, we do not have an opinion of which of them is better.

- In practice, usually, optimality criteria are described in numerical form:
 - we have an objective function f(a) that assigns a numerical value to each possible alternative a, and
 - we want to select an alternative for which this value is the largest possible,
 - or, depending on the context, the smallest possible.
- For example:
 - a company wants to maximize its profit,
 - a city wants to upgrade its road system so as to minimize the average travel time, etc.
- However, often, we need to go somewhat beyond this approach.

- For example, a company may have two (or more) different projects that lead to the same expected profit.
- In this case, we can use this non-uniqueness to optimize something else.
- For example:
 - out of all most-profitable projects,
 - we can select the one that leads to the smallest possible long-term environmental impact.
- In this case, we have a more complex criterion for comparing alternatives: we say that a is better if:
 - either f(a) > f(a')
 - or f(a) = f(a') and g(a) > g(a'), for some other numerical criterion g(a).

- If this still does not select us a unique alternative, we can optimize yet something else, etc.
- In view of this possibility, in this talk, we do not restrict ourselves to numerical optimization criteria.
- Instead, we use the most general definition of the optimality criterion, when:
 - for some pairs of alternatives a and a', we know that a is better (we will denote it by a' < a),
 - for some pairs of alternatives a and a', we know that a' is better (a < a'), and
 - for some pairs of alternatives a and a', a and a' are of the same value (we will denote it by $a \sim a'$).
- Clearly, if a' is better than a, and a'' is better than a', then a'' should be better than a, etc.

- Thus, we arrive at the following definition
- Let A be a set; elements of this set will be called *alternatives*.
- By an *optimality criterion*, we mean a pair of binary relations $(<, \sim)$ on the set A for which:
 - if a < a' and a' < a'', then a < a'';
 - if a < a' and $a' \sim a''$, then a < a'';
 - if $a \sim a'$ and a' < a'', then a < a'';
 - if $a \sim a'$ and $a' \sim a''$, then $a \sim a''$;
 - if $a \sim a'$, then $a' \sim a$;
 - if a < a', then we cannot have a' < a or $a \sim a'$.
- Such a pair of relations is sometimes called a *partial* pre-order.

Formulation of the . . . Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 23 of 47 Go Back Full Screen Close Quit

- Let $(<, \sim)$ be an optimality criterion on a set A.
- An alternative a_{opt} is called *optimal* with respect to this criterion if for every alternative $a \in A$, we have

 $a < a_{\rm opt}$ or $a \sim a_{\rm opt}$.

24. We Need A Final Optimality Criterion

- For the optimality criterion to be useful, it must select at least one optimal alternative.
- If the criterion selects *several* alternatives as optimal, this means that this criterion is not final.
- We can use the resulting non-uniqueness:
 - to optimize something else,
 - i.e., in effect, to come up with a better optimality criterion.
- If for this better criterion, we still have several optimal alternatives, we should modify this criterion again.
- Finally, we get a criterion for which there is exactly one optimal alternative.
- We will call such criteria *final*.

25. For Our Problem, an Optimality Criterion Must Be Affine-Invariant

- In our case, we want to compare different classes (of families of sets).
- In selecting optimality criteria, it is reasonable to take into account that:
 - while we want to deal with sets of points in physical space,
 - from the mathematical viewpoint, we deal with sets of tuples of real numbers.
- Real numbers (coordinates) describing each point depend on what coordinate system we use.
- If we select a different starting point, then all the coordinates are shifted $x_i \to x_i + a_i$.

26. Affine-Invariant (cont-d)

- If we select different axes for the coordinates, we get a rotation $x_i \to \sum_{j=1}^N r_{ij} \cdot x_j$ for an appropriate matrix r_{ij} .
- These transformations make sense for the *isotropic* case, when:
 - all the properties of a material
 - are the same in all directions.
- Wood is an example of an *anisotropic* material.
- For example, it is easier to cut it along the orientation of the original tree than across that orientation.
- It is known that in many cases:
 - the description of an anisotropic material can be reduced to the isotropic case
 - if we apply an appropriate affine transformation.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 27 of 47 Go Back Full Screen Close Quit

27. Affine-Invariant (cont-d)

- This usually comes from the fact that, e.g.:
 - mechanical properties of a body can be described by a symmetric matrix, and
 - a symmetric matrix becomes symmetric if we use its eigenvectors as new axes.
- In view of this, it is reasonable to require that our optimality criterion is invariant:
 - not only with respect to shifts and rotations,
 - but also with respect to all possible affine (linear) transformations.
- Thus, we arrive at the following definitions.
- Let N > 2 be an integer.

- By an affine transformation, we mean $(Tx)_i = a_i + \sum_{i=1}^{n} b_{ij} \cdot x_j$ for some reversible matrix b_{ij} .
- Let T be an affine transformation.
- Let $S \subseteq \mathbb{R}^N$ be a set.
- By the result T(S) of applying T to S, we mean the set $\{T(s) : s \in S\}.$
- Let $F = \{S_c : c \in I\}$ be a family of sets.
- By the result T(F) of applying T to F, we mean the family $\{T(S_c): c \in I\}$.
- Let $C = \{S_c(p)\}$ be class of families.
- By the result T(C) of applying T to C, we mean the class $\{T(S_c(p))\}.$

Formulation of the . . . Our Explanation: . . .

Family of Sets: . . .

Class of Families of Sets

Optimality Criteria: . . . We Need A Final ...

For Our Problem, an . . .

Main Result

Proof

Home Page

Title Page

Page 29 of 47

>>

Go Back

Full Screen

Close

Quit

. Affine-Invariant (cont-d)

- Let A be a set of alternatives, let $(<, \sim)$ be an optimality criterion of the set A.
- Let \mathcal{T} be a class of transformations $A \to A$.
- We say that $(<, \sim)$ is \mathcal{T} -invariant if for all $T \in \mathcal{T}$ and $a, a' \in A$, we have:
 - if a < a' then T(a) < T(a'), and
 - If $a \sim a'$, then $T(a) \sim T(a)$.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final . . . For Our Problem, an.. Main Result Proof Home Page Title Page 44 **>>** Page 30 of 47 Go Back Full Screen Close

Quit

- Let N > 0 and r > 0 be integers.
- We consider sets in \mathbb{R}^N .
- Let $(<, \sim)$ be a final affine-invariant optimality criterion on the set of all r-parametric classes of families.
- Then $r \ge r_{\min} \stackrel{\text{def}}{=} \frac{N \cdot (N+3)}{2} 1$, and:
 - for $r = r_{\min}$,
 - the optimal class consists of concentric homothetic families of ellipsoids.
- This result indeed shows that:
 - the class of concentric homothetic families of ellipsoids
 - is the simplest (= fewer parameters) of all possible optimal classes.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 31 of 47 Go Back Full Screen Close Quit

31. Proof

• Since the optimality criterion is final, there exists exactly one optimal class C_{opt} for which:

$$C < C_{\text{opt}}$$
 or $C \sim C_{\text{opt}}$ for all classes C .

- Let us prove that the optimal class C_{opt} is itself affine-invariant, i.e., that $T(C_{\text{opt}}) = C_{\text{opt}}$ for each affine T.
- Indeed, due to optimality, for each class C and for each affine transformation class T, for $T^{-1}(C)$, we have:

$$T^{-1}(C) < C_{\text{opt}} \text{ or } T^{-1}(C) \sim C_{\text{opt}}.$$

• Since the criterion is affine-invariant, we have:

$$T(T^{-1}(C)) < T(C_{\text{opt}}) \text{ or } T(T^{-1}(C)) \sim T(C_{\text{opt}}).$$

• Here, by the definition of the inverse transformation:

$$T(T^{-1}(C)) = C.$$

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final . . . For Our Problem, an.. Main Result Proof Home Page Title Page 44 **>>** Page 32 of 47 Go Back

Full Screen

Close

Quit

 \bullet So we conclude that for every class C, we have:

$$C < T(C_{\text{opt}}) \text{ or } C \sim T(C_{\text{opt}}).$$

- By definition of optimality, this means that the class $T(C_{\text{opt}})$ is optimal.
- However, our optimality criterion is final, which means that there is only one optimal class.
- Thus, indeed, $T(C_{\text{opt}}) = C_{\text{opt}}$.
- Since the optimal class is affine-invariant, with each family F this class also contains the family T(F).
- This means that for each set S_c from each family, some family from the optimal class contains the set $T(S_c)$.
- Let us show that $r \ge \frac{N \cdot (N+3)}{2} 1$.

- Indeed, it is known that:
 - for every non-degenerate bounded set S (i.e., not contained in a proper subspace),
 - among all ellipsoids that contain S, there exists a unique ellipsoid of the smallest volume.
- It is also known that this correspondence between a set and the corresponding ellipsoid is affine-invariant:
 - if an ellipsoid E corresponds to the set S_c , then,
 - for each affine transformation T, to the set $T(S_c)$ there corresponds the ellipsoid T(E).
- It is known that every two ellipsoids can be obtained from each other by an affine transformation.

- Thus:
 - the family of all ellipsoids corresponding to all the sets from all the families
 - consists of all the ellipsoids.
- How many ellipsoids are there?
- A general ellipsoid can be determine by a quadratic formula $\sum_{ij} a_{ij} \cdot x_i \cdot x_j + \sum_{i=1}^{N} a_i \cdot x_i \leq 1$.
- Here, a_{ij} is a symmetric matrix a_{ij} and a_i is a vector.
- It is easy to see that different combinations of the matrix and the vector lead to different ellipsoids.
- We need N values a_1, \ldots, a_N to describe a vector.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 35 of 47 Go Back Full Screen Close Quit

- Out of N^2 elements of the matrix:
 - we need N values to describe its diagonal values a_{ii} , and
 - we need $\frac{N^2-N}{2}$ to describe non-diagonal elements.
- We divide by two since the matrix is symmetric:

$$a_{ij} = a_{ji}.$$

• Thus, overall, we need

$$N + N + \frac{N^2 - N}{2} = \frac{N \cdot (N+3)}{2}$$
 values.

• So, the set of all ellipsoids is:

$$\frac{N \cdot (N+3)}{2}$$
-dimensional.

Formulation of the...

Our Explanation:...

Family of Sets: . . .

Family of S

Class of Families of Sets
Optimality Criteria:...

We Need A Final...

For Our Problem, an...

Main Result

Proof

Home Page

Title Page

>>

Page 36 of 47

Go Back

Full Screen

Full Screen

Close

Quit

- To each set S_c from families from the optimal class, we assign an ellipsoid.
- Thus, the dimension of the set of such sets should also be at least $\frac{N \cdot (N+3)}{2}$ -dimensional.
- These sets are divided into 1-parametric families.
- So the dimension r of the class of such families cannot be smaller than the above dimension minus 1.
- Thus, indeed, $r \ge \frac{N \cdot (N+3)}{2} 1$.

- Let us now prove that:
 - for the smallest possible dimension

$$r = r_{\min} \stackrel{\text{def}}{=} \frac{N \cdot (N+3)}{2} - 1,$$

- all the sets S_c from the each family of the optimal class are ellipsoids.
- Indeed, we showed that each ellipsoid is associated with some set S_c from one of these families.
- The unit ball with a center at 0 is clearly an ellipsoid.
- Let us consider the set S_c which is associated with this unit ball.
- A unit ball is invariant with respect to all the rotations around its center.

Formulation of the...

Our Explanation:...

Family of Sets: . . .

Class of Families of Sets

Optimality Criteria: . . .

We Need A Final...
For Our Problem, an...

Main Result

Proof

Home Page

Title Page

Page 38 of 47

Go Back

Full Screen

Clos

Close

Quit

- If the associated set S_c is not equal to the unit ball, this means that:
 - this set is not invariant
 - with respect to at least some rotations.
- In other words:
 - the group of all rotations that leave this set invariant
 - is a proper subgroup of the group of all rotations.
- This implies that the dimension of this group is smaller than the dimension of the group of all rotations.
- Thus, that there exists at least 1-parametric family \mathcal{R} of rotations R w.r.t. which the set S_c is not invariant.
- The optimal class is affine-invariant.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 39 of 47 Go Back Full Screen Close Quit

- Thus, all the sets $R(S_c)$ are also sets from some family from the optimal class.
- For all these sets, the same unit ball is the smallest-volume ellipsoid.
- Thus, for this particular ellipsoid the unit ball:
 - we have at least a 1-dimensional family of sets S_c
 - associated with this ellipsoid.
- By applying a generic affine transformation:
 - we can find a similar at-least-1-dimensional family of sets
 - corresponding to each ellipsoid.

- Thus:
 - the dimension of the set of all sets S_c
 - is at least one larger than the dimension of the family of all ellipsoids,

- i.e. at least
$$\frac{N \cdot (N+3)}{2} + 1 = r_{\min} + 2$$
.

- However, we have a r_{\min} -dimensional class of 1-dimensional families of sets.
- So the overall dimension of the set of all the sets S_c cannot be larger than $r_{\min} + 1$.
- This contradiction shows that the set S_c cannot be different from the enclosing minimal-volume ellipsoid.
- Thus, indeed, each set from each family from the optimal class is an ellipsoid.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 41 of 47 Go Back Full Screen Close Quit

41. Completing the Proof

- To complete the proof, we need to prove that ellipsoids in each family are concentric and homothetic.
- We have proven that each ellipsoid appears as an appropriate smallest-volume set.
- We know that each set S_c coincides with its smallest-volume enclosure.
- So, each ellipsoid appears as one of the sets S_c from one of the families from the optimal class.
- Let us again consider the unit ball centered at 0:
 - if the 1-dimensional family F_0 containing this ball is not invariant with respect to all possible rotations,
 - then we have at least a 1-dimensional group of different families containing the same ellipsoid.

42. Completing the Proof (cont-d)

- We have:
 - an r_{\min} -dimensional class of 1-dimensional families
 - covering the whole $(r_{\text{max}} + 1)$ -dimensional family of ellipsoids.
- Thus, all elements of all families are different.
- So we cannot have several families containing the same ellipsoid.
- This argument shows that the family F_0 containing the unit ball *should be* rotation-invariant.
- All the sets from this family are included in each other and thus, cannot be rotated into each other.
- This means that each ellipsoid from this family F_0 must be rotation-invariant.

Our Explanation: . . . Family of Sets: . . . Class of Families of Sets Optimality Criteria: . . . We Need A Final ... For Our Problem, an . . . Main Result Proof Home Page Title Page **>>** Page 43 of 47 Go Back Full Screen Close Quit

43. Completing the Proof (cont-d)

- This means that each ellipsoid from this family must be a ball concentric with our selected unit ball.
- Thus, it be homothetic to the original ball.
- For any other family F:
 - by selecting any ellipsoid E from this family and
 - by applying the affine transformation that transforms the above unit ball into E,
 - we get a new family $T(F_0)$ of concentric homothetic ellipsoids.
- An ellipsoid can only belong to one family.
- \bullet We thus conclude that the family F also consists of concentric homothetic ellipsoids.
- The result is proven.

44. Conclusions

- Wood is one the oldest construction materials; however:
 - in spite of several thousand years of experience with wooden constructions,
 - predicting and estimating mechanical properties of wooden constructions remains a difficult problem.
- One of the main reasons for this difficulty is that:
 - in contrast to many other constructions materials which are largely homogeneous and isotropic,
 - wood is highly inhomogeneous and anisotropic.
- Recently, a new property of wooden materials was discovered.
- It has a potential to make mechanical analysis of wooden structures more efficient.

45. Conclusions (cont-d)

- Namely, for wood:
 - iso-correlation surfaces (i.e., surfaces of equal correlation)
 - are well-approximated by concentric homothetic ellipsoids.
- The problem is that this property is purely empirical.
- It has no theoretical explanation and thus, engineers are understandably reluctant to rely on it.
- In this talk, we provide a theoretical explanation for this empirical fact.
- Thus, we make this property more reliable and therefore more useable.

46. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science);
- HRD-1834620 and HRD-2034030 (CAHSI Includes).

It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.

