From Intervals Through Function Intervals to a General Description of Imprecise Probabilities

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, Texas 79968, USA
vladik@utep.edu

(based on joint work with Olga Kosheleva and Andrzej Pownuk)

1. Need to Take Uncertainty Into Account When Processing Data

- In practice, we are often interested in a quantity y which is difficult to measure directly.
- Examples: distance to a star, amount of oil in the well, tomorrow's weather.
- Solution: find easier-to-measure quantities x_1, \ldots, x_n related to y by a known dependence $y = f(x_1, \ldots, x_n)$.
- Then, we measure x_i and use measurement results \widetilde{x}_i to compute an estimate $\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$.
- Measurements are never absolutely accurate, so even if the model f is exact, $\widetilde{x}_i \neq x_i$ leads to $\Delta y \stackrel{\text{def}}{=} \widetilde{y} y \neq 0$.
- It is important to use information about measurement errors $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i$ to estimate the accuracy Δy .

2. We Often Have Imprecise Probabilities

- Usual assumption: we know the probabilities for Δx_i .
- To find them, we measure the same quantities:
 - with our measuring instrument (MI) and
 - with a much more accurate MI, with $\widetilde{x}_i^{\text{st}} \approx x_i$.
- In two important cases, this does not work:
 - state-of-the art-measurements, and
 - measurements on the shop floor.
- Then, we have partial information about probabilities.
- Often, all we know is an upper bound $|\Delta x_i| \leq \Delta_i$.
- Then, we only know that $x_i \in [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i]$ and $y \in [\underline{y}, \overline{y}] \stackrel{\text{def}}{=} \{ f(x_1, \dots, x_n) : x_i \in [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i] \}.$
- Computing $[y, \overline{y}]$ is known as interval computation.

We Often Have . . . How Do We Describe . . Imprecise . . . Reminder: What Is . . . Consequences for . . . Resulting Definition What Can Be . . . What to Do in a Multi-. Home Page Title Page **>>** Page 3 of 15 Go Back Full Screen Close Quit

3. How Do We Describe Imprecise Probabilities?

- *Ultimate goal of most estimates:* to make decisions.
- Known: a rational decision-maker maximizes expected utility E[u(y)].
- For smooth u(y), $y \approx \widetilde{y}$ implies that

$$u(y) = u(\widetilde{x}) + (y - \widetilde{y}) \cdot u'(\widetilde{y}) + \frac{1}{2} \cdot (y - \widetilde{y})^2 \cdot u''(\widetilde{y}).$$

- So, to find E[u(y)], we must know moments $E[(y-\widetilde{y})^k]$.
- Often, u(x) abruptly changes: e.g., when pollution level exceeds y_0 ; then $E[u(y)] \sim F(y) \stackrel{\text{def}}{=} \text{Prob}(y \leq y_0)$.
- From F(y), we can estimate moments, so F(x) is enough.
- Imprecise probabilities mean that we know F(y), we only know bounds $(p\text{-}box) \underline{F}(y) \leq F(y) \leq \overline{F}(y)$.

We Often Have . . . How Do We Describe . . Imprecise . . . Reminder: What Is . . . Consequences for . . . Resulting Definition What Can Be ... What to Do in a Multi-. Home Page Title Page **>>** Page 4 of 15 Go Back Full Screen Close Quit

4. Imprecise Probabilities: What Is Computable?

- Computations with p-boxes are practically important.
- It is thus desirable to come up with efficient algorithms which are as general as possible.
- It is known that too general problems are often *not* computable.
- To avoid wasting time, it is therefore important to find out what *can* be computed.
- At first glance, this question sounds straightforward:
 - to describe a cdf, we can consider a computable function F(x);
 - to describe a p-box, we consider a computable function interval $[\underline{F}(x), \overline{F}(x)]$ (à la W. Taha et al.).
- Often, we can do that, but we will show that sometimes, we need to go beyond function intervals.

5. Reminder: What Is Computable?

- A real number x corresponds to a value of a physical quantity.
- \bullet We can measure x with higher and higher accuracy.
- So, x is called *computable* if there is an algorithm, that, given k, produces a rational r_k s.t. $|x r_k| \le 2^{-k}$.
- A computable function computes f(x) from x.
- We can only use approximations to x.
- So, an algorithm for computing a function can, given k, request a 2^{-k} -approximation to x.
- Most usual functions are thus computable.
- Exception: step-function f(x) = 0 for x < 0 and f(x) = 1 for $x \ge 0$.
- Indeed, no matter how accurately we know $x \approx 0$, from $r_k = 0$, we cannot tell whether x < 0 or $x \geq 0$.

6. Consequences for Representing a cdf F(x)

- We would like to represent a general probability distribution by its cdf F(x).
- From the purely mathematical viewpoint, this is indeed the most general representation.
- At first glance, it makes sense to consider computable functions F(x).
- For many distributions, e.g., for Gaussian, F(x) is computable.
- However, when x = 0 with probability 1, the cdf F(x) is exactly the step-function.
- And we already know that the step-function is not computable.
- Thus, we need to find an alternative way to represent cdf's beyond computable functions.

7. Back to the Drawing Board

- Each value F(x) is the probability that $X \leq x$.
- We cannot empirically find exact probabilities p.
- We can only estimate f based on a sample of size N.
- For large N, the difference $d \stackrel{\text{def}}{=} p f$ is asymptotically normal, with $\mu = 0$ and $\sigma = \sqrt{\frac{p \cdot (1-p)}{N}}$.
- Situations when $|d \mu| < 6\sigma$ are negligibly rare, so we conclude that $|f p| \le 6\sigma$.
- For large N, we can get $6\sigma \leq \delta$ for any accuracy $\delta > 0$.
- We get a sample X_1, \ldots, X_N .
- We don't know the exact values X_i , only measured values \widetilde{X}_i s.t. $|\widetilde{X}_i X_i| \leq \varepsilon$ for some accuracy ε .
- So, what we have is a frequency $f = \text{Freq}(\widetilde{X}_i \leq x)$.

We Often Have . . . How Do We Describe . . Imprecise . . . Reminder: What Is . . . Consequences for . . . Resulting Definition What Can Be ... What to Do in a Multi-. Home Page Title Page **>>** Page 8 of 15 Go Back Full Screen Close Quit

8. Resulting Definition

• Here, $X_i \leq x - \varepsilon \Rightarrow \widetilde{X}_i \leq x \Rightarrow X_i \leq x + \varepsilon$, so

 $\operatorname{Freq}(X_i \leq x - \varepsilon) \leq f = \operatorname{Freq}(\widetilde{X}_i \leq x) \leq \operatorname{Freq}(X_i \leq x + \varepsilon).$

- Frequencies are δ -close to probabilities, so we arrive at the following:
- For every $x, \varepsilon > 0$, and $\delta > 0$, we get a rational number f such that $F(x \varepsilon) \delta \le f \le F(x + \varepsilon) + \delta$.
- This is how we define a computable cdf F(x).
- In the computer, to describe a distribution on an interval $[\underline{T}, \overline{T}]$:
 - we select a grid $x_1 = \underline{T}, x_2 = \underline{T} + \varepsilon, \ldots$, and
 - we store the corr. frequencies f_i with accuracy δ .
- A class of possible distribution is represented, for each ε and δ , by a finite list of such approximations.

We Often Have . . . How Do We Describe . . Imprecise . . . Reminder: What Is . . . Consequences for . . . Resulting Definition What Can Be . . . What to Do in a Multi-. Home Page Title Page **>>** Page 9 of 15 Go Back Full Screen Close Quit

9. First Equivalent Definition

• Original: $\forall x \, \forall \varepsilon_{>0} \, \forall \delta_{>0}$, we get a rational f such that

$$F(x-\varepsilon) - \delta \le f \le F(x+\varepsilon) + \delta.$$

- Equivalent: $\forall x \, \forall \varepsilon_{>0} \, \forall \delta_{>0}$, we get a rational f which is δ -close to F(x') for some x' such that $|x' x| \leq \varepsilon$.
- Proof of equivalence:

- We know that
$$F(x+\varepsilon) - F(x+\varepsilon/3) \to 0$$
 as $\varepsilon \to 0$.

– So, for
$$\varepsilon = 2^{-k}$$
, $k = 1, 2, ...$, we take f and f' s.t.

$$F(x + \varepsilon/3) - \delta/4 \le f \le F(x + (2/3) \cdot \varepsilon) + \delta/4$$

$$F(x + (2/3) \cdot \varepsilon) - \delta/4 \le f' \le F(x + \varepsilon) + \delta/4.$$

– We stop when f and f' are sufficiently close:

$$|f - f'| \le \delta.$$

– Thus, we get the desired f.

Need to Take . . . We Often Have . . . How Do We Describe . . Imprecise . . . Reminder: What Is . . . Consequences for . . . Resulting Definition What Can Be ... What to Do in a Multi-... Home Page Title Page **>>** Page 10 of 15 Go Back

Full Screen

Close

10. Second Equivalent Definition

- We start with pairs $(x_1, f_1), (x_2, f_2), \ldots$
- When $f_{i+1} f_i > \delta$, we add intermediate pairs $(x_i, f_i + \delta), (x_i, f_i + 2\delta), \dots, (x_i, f_{i+1}).$
- The resulting set of pairs is (ε, δ) -close to the graph $\{(x,y): F(x-0) \leq y \leq F(x)\}$ in Hausdorff metric d_H .
- (x,y) and (x',y') are (ε,δ) -close if $|x-x'| \le \varepsilon$ and $|y-y'| \le \delta$.
- The sets S and S' are (ε, δ) -close if:
 - for every $s \in S$, there is a (ε, δ) -close point $s' \in S'$;
 - for every $s' \in S'$, there is a (ε, δ) -close point $s \in S$.
- Compacts with metric d_H form a computable compact.
- So, F(x) is a monotonic computable object in this compact.

We Often Have . . . How Do We Describe . . Imprecise . . . Reminder: What Is . . . Consequences for . . . Resulting Definition What Can Be ... What to Do in a Multi-. Home Page Title Page **>>** Page 11 of 15 Go Back Full Screen Close Quit

11. What Can Be Computed: A Positive Result for the 1D Case

- Reminder: we are interested in F(x) and $E_{F(x)}[u(x)]$ for smooth u(x).
- Reminder: estimate for F(x) is part of the definition.
- Question: computing $E_{F(x)}[u(x)]$ for smooth u(x).
- Our result: there is an algorithm that:
 - given a computable cdf F(x),
 - given a computable function u(x), and
 - given accuracy $\delta > 0$,
 - computes $E_{F(x)}[u(x)]$ with accuracy δ .
- \bullet For computable classes \mathcal{F} of cdfs, a similar algorithm computes the range of possible values

$$[\underline{u}, \overline{u}] \stackrel{\text{def}}{=} \{ E_{F(x)}[u(x)] : F(x) \in \mathcal{F} \}.$$

Need to Take...

We Often Have...

How Do We Describe . . .

Imprecise . . .

Reminder: What Is...

Consequences for...

Resulting Definition

What Can Be...

What to Do in a Multi-...

Home Page

Title Page

Page 12 of 15

Go Back

Full Screen

Close

12. Proof: Main Idea

• Computable functions are computably continuous: for every $\delta > 0$, we can compute $\varepsilon > 0$ s.t.

$$|x - x'| \le \varepsilon \Rightarrow |f(x) - f(x')| \le \delta.$$

- We select ε corr. to $\delta/4$, and take a grid with step $\varepsilon/4$.
- For each x_i , the value f_i is $(\delta/4)$ -close to $F(x_i')$ for some x_i' which is $(\varepsilon/4)$ -close to x_i .
- The function u(x) is $(\delta/2)$ -close to a piece-wise constant function $u'(x) = u(x_i)$ for $x \in [x'_i, x'_{i+1}]$.
- Thus, $|E[u(x)] E[u'(x)]| \le \delta/2$.
- Here, $E[u'(x)] = \sum_{i} u(x_i) \cdot (F(x'_{i+1}) F(x'_i)).$
- Here, $F(x_i')$ is close to f_i and $F(x_{i+1}')$ is close to f_{i+1} .
- Thus, E[u'(x)] (and hence, E[u(x)]) is computably close to a computable sum $\sum u(x_i) \cdot (f_{i+1} f_i)$.

Need to Take . . . We Often Have . . . How Do We Describe . . Imprecise . . . Reminder: What Is . . . Consequences for . . . Resulting Definition What Can Be . . . What to Do in a Multi-. Home Page Title Page **>>** Page 13 of 15 Go Back Full Screen Close

13. What to Do in a Multi-D Case?

• For each g(x), y, $\varepsilon > 0$, and $\delta > 0$, we can find a frequency f such that:

$$|P(g(x) \le y') - f| \le \varepsilon$$
 for some y' s.t. $|y - y'| \le \delta$.

• We select an ε -net x_1, \ldots, x_n for X. Then,

$$X = \bigcup_{i} B_{\varepsilon}(x_i)$$
, where $B_{\varepsilon}(x) \stackrel{\text{def}}{=} \{x' : d(x, x') \leq \varepsilon\}$.

- We select f_1 which is close to $P(B_{\varepsilon'}(x_1))$ for all ε' from some interval $[\underline{\varepsilon}, \overline{\varepsilon}]$ which is close to ε .
- We then select f_2 which is close to $P(B_{\varepsilon'}(x_1) \cup B_{\varepsilon'}(x_2))$ for all ε' from some subinterval of $[\underline{\varepsilon}, \overline{\varepsilon}]$, etc.
- Then, we get approximations to probabilities of the sets $B_{\varepsilon}(x_i) (B_{\varepsilon}(x_1) \cup \ldots \cup B_{\varepsilon}(x_{i-1}))$.
- This lets us compute the desired values E[u(x)].

Need to Take...

We Often Have...

How Do We Describe . . .

Imprecise . . .

Reminder: What Is...
Consequences for...

Resulting Definition

What Can Be...

What to Do in a Multi-...

Home Page

Title Page

Page 14 of 15

Go Back

F # 6

Full Screen

Close

14. Acknowledgments

- The authors are greatly thankful to Dr. Walid Taha and to Rice University for this opportunity.
- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721.

