Adding Constraints to Situations When, In Addition to Intervals, We Also Have Partial Information about Probabilities

Martine Ceberio¹, Scott Ferson², Cliff Joslyn³, Vladik Kreinovich¹, and Gang Xiang¹

¹Department of Computer Science University of Texas, El Paso, TX 79968, USA ²Applied Biomathematics ³Los Alamos National Laboratory

mceberio@utep.edu, scott@ramas.com, joslyn@lanl.gov vladik@utep.edu, gxiang@utep.edu

Limitations of the . . . How to Describe . . . Kolmogorov-Smirnov . . . Illustration: . . . Illustration: . . . Computing VComputing \overline{V} Computational . . . How to Handle Gauging Amount of . . . Case of a Continuous... Case of a p-Box Acknowledgments Shannon's Derivation: . . Shannon's Derivation . . • Page 1 of 19 Go Back Full Screen

1. Statistical Analysis Is Important

- Fact: statistical analysis of measurement and observation results is an important part of data processing and data analysis.
- Specifics:
 - when faced with new data,
 - engineers and scientists usually start with estimating standard statistical characteristics such as:
 - * the mean E,
 - * the variance V,
 - * the probability distribution function (pdf) F(x) of each variable, and
 - * the covariance and correlation between different variables.

2. Limitations of Traditional Statistical Techniques and the Need to Consider Interval Uncertainty

- Main assumption: traditional statistical techniques assume that the measured values $\tilde{x}_1, \dots \tilde{x}_n$ coincide with the actual values x_1, \dots, x_n of the measured quantities.
- This assumption is often true: if the variability of each variable is much higher than the measurement errors $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i$.
- Example: the accuracy of measuring a person's height (≈ 1 cm) is \ll variability in height.
- Sometimes, this assumption is not true: when the measurement errors Δx_i are of the same order of magnitude.
- Conclusion: Δx_i cannot be ignored in statistical analysis.
- Frequent situation: the only information about Δx_i is the upper bound Δ_i : $|\Delta x_i| \leq \Delta_i$.
- Interval uncertainty: the only information about x_i is that $x_i \in \mathbf{x}_i \stackrel{\text{def}}{=} [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i].$

3. Adding Interval Uncertainty to Statistical Techniques: What Is Known

- We start with: a statistic $C(x_1, \ldots, x_n)$, such as:
 - population mean $E = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i;$
 - population variance $V = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i E)^2$;
 - histogram pdf $F_n(x) = \frac{\#i : x_i \le x}{n}$;
 - population covariance $C_{x,y} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i E_x) \cdot (y_i E_y).$
- Interval extension: find the range

$$\mathbf{C} = C(\mathbf{x}_1, \dots, \mathbf{x}_n) \stackrel{\text{def}}{=} \{C(x_1, \dots, x_n) : x_1 \in \mathbf{x}_1, \dots, x_n \in \mathbf{x}_n\}.$$

- \bullet General case: the general problem is NP-hard, even for V.
- \bullet Conclusion: in general, we can only compute an enclosure.
- Specific cases: efficient algorithms are possible: for \mathbf{E} , for \underline{V} , for \overline{V} when $[\underline{x}_i, \overline{x}_i] \not\subseteq (\underline{x}_j, \overline{x}_j)$, etc.

Adding Interval...

Limitations of the . . .

How to Describe . . .

Kolmogorov-Smirnov...

Illustration: . . .

Computing \underline{V} Computing \overline{V}

Computational . . .

How to Handle...

Gauging Amount of...

Case of a Continuous...

Case of a p-Box
Acknowledgments

Shannon's Derivation: . . .

Shannon's Derivation . . .

Title Page

Go Back

Full Screen

4. Limitations of the Existing Approach

- Currently used idea:
 - we start with a statistic $C(x_1, \ldots, x_n)$ for estimating a given characteristic S;
 - we evaluate this statistic under interval uncertainty, resulting in $\mathbf{C} = C(\mathbf{x}_1, \dots, \mathbf{x}_n)$.
- First limitation of this idea:
 - we know that $C(x_1, \ldots, x_n) \approx S$;
 - sometimes, the estimation error $C(x_1, \ldots, x_n) S \neq 0$ is not always taken into account when estimating \mathbb{C} .
- Solution: instead of the original statistic C, we consider the bounds C^- and C^+ of the confidence interval.
- Good news: the interval $\left[\underline{C}^-, \overline{C}^+\right]$ is an enclosure for S (with appropriate certainty).
- Remaining limitation: excess width.
- New idea: find $S = \{S(F) : F \text{ is possible}\}.$
- Related problem: how to describe class \mathcal{F} of possible probability distributions F.

Adding Interval... Limitations of the . . How to Describe . . . Kolmogorov-Smirnov . . . Illustration: . . . Illustration: . . . Computing VComputing \overline{V} Computational . . . How to Handle . . . Gauging Amount of . . . Case of a Continuous... Case of a p-Box Acknowledgments Shannon's Derivation: . . Shannon's Derivation . . Title Page 44 **>>** Page 5 of 19 Go Back Full Screen

5. How to Describe Possible Probability Distributions: p-Boxes

- General situation:
 - we do not know the probability distribution of the actual values x_i ;
 - we want to determine this distribution.
- Question: which characteristics of this distribution are practically useful?
- Practical example:
 - there is a critical threshold x_0 after which a chip delays too much, a panel cracks, etc.;
 - we want to make sure that the probability of exceeding x_0 is small.
- Resulting characteristic: $Prob(x_i \le x_0)$, i.e., $cdf F(x_0)$.
- *p-box*:
 - we cannot determine the *exact* values of F(x);
 - thus, we should look for bounds $\mathbf{F}(x) = [\underline{F}(x), \overline{F}(x)];$
 - the function $x \to \mathbf{F}(x)$ is called a *p-box*.

Adding Interval... Limitations of the . . . How to Describe . . . Kolmogorov-Smirnov . . . Illustration: . . . Illustration: . . . Computing VComputing \overline{V} Computational . . . How to Handle . . . Gauging Amount of . . . Case of a Continuous... Case of a p-Box Acknowledgments Shannon's Derivation: . . Shannon's Derivation . . Title Page 44 Page 6 of 19 Go Back Full Screen

6. Kolmogorov-Smirnov (KS) p-Box

- New idea (reminder):
 - transform observations x_1, \ldots, x_n into a p-box;
 - estimate a characteristic S based on the p-box.
- How to transform: use KS inequalities.
- Main idea behind KS: for each x_0 , we have
 - actual (unknown) probability $p = F(x_0)$ that $x \leq x_0$, and
 - frequency $F_n(x_0) = \frac{\#i : x_i \le x_0}{n}$.
- Known: for large n, $F_n(x_0) \approx \text{normal}$, and with given certainty α , we have $p k \cdot \sigma \leq F_n(x_0) \leq p + k \cdot \sigma$, where $\sigma = \sqrt{\frac{p \cdot (1-p)}{n}}$ and $k = k(\alpha)$.
- Conclusion: with certainty α , we get bounds on $p = F(x_0)$ in terms of $F_n(x_0)$.
- We use these bounds for $x_0 = x_i$ and use monotonicity to get bounds $[F_n(x) \varepsilon, F_n(x) + \varepsilon]$ for all $x \in [x_i, x_{i+1}]$.

Limitations of the . . .

How to Describe...

Adding Interval...

Kolmogorov-Smirnov . .

Illustration: . . .

Computing V

Computing \overline{V}

Computational . . .

How to Handle...

Gauging Amount of...

Case of a Continuous...

Case of a p-Box

Acknowledgments

Shannon's Derivation: . .

Shannon's Derivation . .

Title Page

>>

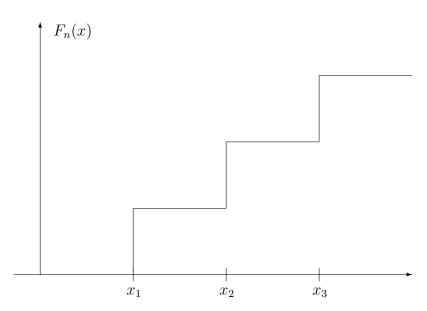
Page 7 of 19

Go Back

Full Screen

CI

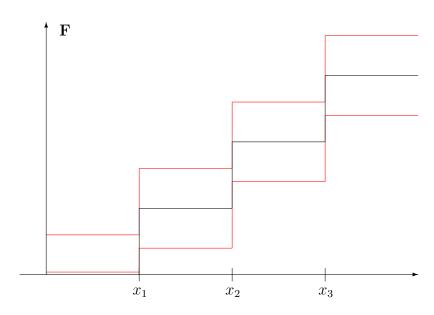
7. Illustration: Histogram Pdf



How to Describe . . . Kolmogorov-Smirnov... Illustration: . . . Illustration: . . . Computing \underline{V} Computing \overline{V} Computational . . . How to Handle... Gauging Amount of . . . Case of a Continuous . . . Case of a p-Box Acknowledgments Shannon's Derivation: . . . Shannon's Derivation . . . Title Page 44 Page 8 of 19 Go Back Full Screen

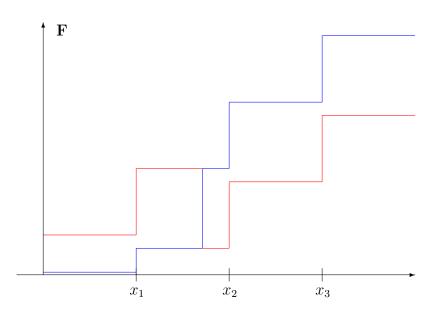
Limitations of the . . .

8. Illustration: Kolmogorov-Smirnov p-Box



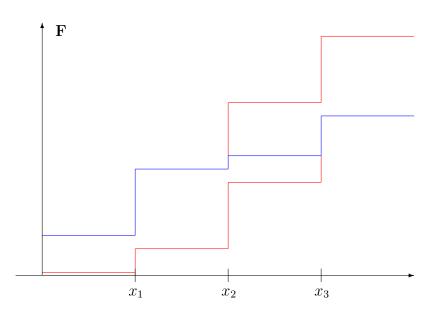
Limitations of the . . . How to Describe . . . Kolmogorov-Smirnov . . . Illustration: . . . Illustration: . . . Computing \underline{V} Computing \overline{V} Computational . . . How to Handle... Gauging Amount of . . . Case of a Continuous . . . Case of a p-Box Acknowledgments Shannon's Derivation: . . . Shannon's Derivation . . . Title Page 44 **>>** Page 9 of 19 Go Back Full Screen

9. Computing \underline{V}



Limitations of the . . . How to Describe . . . Kolmogorov-Smirnov... Illustration: . . . Illustration: . . . Computing \underline{V} Computing \overline{V} Computational . . . How to Handle... Gauging Amount of . . . Case of a Continuous . . . Case of a p-Box Acknowledgments Shannon's Derivation: . . . Shannon's Derivation . . . Title Page 44 Page 10 of 19 Go Back Full Screen

10. Computing \overline{V}



Limitations of the . . . How to Describe . . . Kolmogorov-Smirnov... Illustration: . . . Illustration: . . . Computing \underline{V} Computing \overline{V} Computational . . . How to Handle... Gauging Amount of . . . Case of a Continuous . . . Case of a p-Box Acknowledgments Shannon's Derivation: . . . Shannon's Derivation . . . Title Page 44 Page 11 of 19 Go Back Full Screen

11. Computational Complexity of Computing \underline{V} and \overline{V}

- Traditional method:
 - we can compute V in linear time O(n);
 - computing \overline{V} is, in general, NP-hard;
 - when $[\underline{x}_i, \overline{x}_i] \not\subseteq (\underline{x}_i, \overline{x}_i)$, we can compute \overline{V} is linear time.
- Analysis:
 - in effect, the variance of $F \in \mathbf{F}$ can be reduced to the variance over horizontal layers;
 - these layers satisfy the above "subset" property.
- New method:
 - we can compute \underline{V} in linear time O(n), and
 - we can compute \overline{V} in linear time O(n);

Limitations of the . . . How to Describe . . . Kolmogorov-Smirnov . . . Illustration: . . . Illustration: . . . Computing VComputing \overline{V} Computational . . . How to Handle . . . Gauging Amount of . . . Case of a Continuous . . . Case of a p-Box Acknowledgments Shannon's Derivation: . . Shannon's Derivation . . Title Page 44 Page 12 of 19 Go Back Full Screen

12. How to Handle Additional Constraints

- Previously: the only information we have is $F(x) \in \mathbf{F}(x)$.
- Frequent situation: we have additional information about F(x).
- Example: we know the shape of F(x), i.e., we know that $F(x) = F_0(x, a_1, \ldots, a_n)$ for known F_0 and $a_i \in [\underline{a}_i, \overline{a}_i]$.
- Typical situation: $F(x) = F_0\left(\sum_{i=1}^n a_i \cdot e_i(x)\right)$.
- Example: Gaussian $F(x) = F_0\left(\frac{x-a}{\sigma}\right) = F_0(a_1 \cdot x + a_2).$
- p-box solution: find a p-box containing all such F(x), and estimate, e.g., \mathbf{V} , based on this p-box.
- Drawback: excess width.
- Exact estimates: $\underline{F}(x_i) \leq F_0\left(\sum_{i=1}^n a_i \cdot e_i(x_i)\right) \leq \overline{F}(x_i)$, hence

$$F_0^{-1}(\underline{F}(x_i)) \le \sum_{i=1}^n a_i \cdot e_i(x_i) \le F_0^{-1}(\overline{F}(x_i)). \tag{*}$$

• Algorithm: apply linear programming to (*) and $\underline{a}_i \leq a_i \leq \overline{a}_i$.

Limitations of the . . .

Kolmogorov-Smirnov . . .

How to Describe...

Illustration: . . .

Illustration: . . .

Computing V

Computing $\overline{\overline{V}}$

Computational...

How to Handle...

Gauging Amount of...

Case of a Continuous...

Case of a p-Box
Acknowledgments

Shannon's Derivation: . .

Shannon's Derivation . .

Page 13 of 19

Go Back

Full Screen

C)

13. Gauging Amount of Uncertainty

- Shannon's idea: (average) number of "yes"-"no" (binary) questions that we need to ask to determine the object.
- Fact: after q binary questions, we have 2^q possible results.
- Discrete case: if we have n alternatives, we need q questions, where $2^q \ge n$, i.e., $q \sim \log_2(n)$.
- Discrete probability distribution: $q = -\sum p_i \cdot \log_2(p_i)$.
- Continuous case definition: number of questions to find an object with a given accuracy ε .
- Interval uncertainty: if $x \in [a, b]$, then $q \sim S \log_2(\varepsilon)$, with $S = \log_2(b a)$.
- Probabilistic uncertainty: $S = -\int \rho(x) \cdot \log_2 \rho(x) dx$.

14. Case of a Continuous Probability Distribution

- Once an approximate value r is determined, possible actual values of x form an interval $[r \varepsilon, r + \varepsilon]$ of width 2ε .
- So, we divide the real line into intervals $[x_i, x_{i+1}]$ of width 2ε and find the interval that contains x.
- The average number of questions is $S = -\sum p_i \cdot \log_2(p_i)$, where the probability p_i that $x \in [x_i, x_{i+1}]$ is $p_i \approx 2\varepsilon \cdot \rho(x_i)$.
- So, for small ε , we have

$$S = -\sum \rho(x_i) \cdot \log_2(\rho(x_i)) \cdot 2\varepsilon - \sum \rho(x_i) \cdot 2\varepsilon \cdot \log_2(2\varepsilon),$$

where the first sum in this expression is the integral sum for the integral $S(\rho) \stackrel{\text{def}}{=} - \int \rho(x) \cdot \log_2(\rho(x)) dx$, so

$$S \approx -\int \rho(x) \cdot \log_2(\rho(x)) dx - \log_2(2\varepsilon).$$

15. Case of a p-Box

• Situation: we know that

$$F(x) \in \mathbf{F}(x) = [F_0(x) - \Delta F(x), F_0(x) + \Delta F(x)],$$

where $F_0(x)$ is smooth, with $\rho_0(x) \stackrel{\text{def}}{=} F'_0(x)$.

- Problem: find the range $[\underline{S}, \overline{S}] = \{S_{\varepsilon}(F) : F \in \mathbf{F}\}.$
- *Known result:* asymptotically,

$$\overline{S} \sim -\int \rho_0(x) \cdot \log_2(\rho_0(x)) dx - \log_2(2\varepsilon).$$

- New result: $\underline{S} \sim -\int \rho_0(x) \cdot \log_2(\max(2\Delta F(x), 2\varepsilon \cdot \rho_0(x))) dx$.
- Comment: when $\varepsilon \to 0$, $\overline{S} \to \infty$ but \underline{S} remains finite.
- Idea of the proof: $p_i \approx \rho_0(x_i) \cdot \Delta x_i$, hence

$$-\sum p_i \cdot \log_2(p_i) \approx -\int \rho_0(x) \cdot \log(\rho_0(x) \cdot \Delta x) \, dx.$$

$$\overline{F}(x) / \sum_{i=0}^{\infty} P_i(x) = 0$$

Here,
$$\Delta x_i = \max\left(\frac{2\Delta F(x)}{\rho_0(x)}, 2\varepsilon\right)$$
: $E(x)$

Limitations of the . . .

How to Describe . . .

Kolmogorov-Smirnov . . .

Illustration: . . .

Computing \underline{V}

Computing \overline{V}

Computational . . .

How to Handle...

Gauging Amount of...

Case of a Continuous...

Case of a p-Box

Acknowledgments

Shannon's Derivation:...

Title Page

Page 16 of 19

Go Back

Full Screen

CI

16. Acknowledgments

This work was supported in part:

- \bullet by National Science Foundation grants EAR-0225670 and DMS-0532645 and
- by Texas Department of Transportation grant No. 0-5453

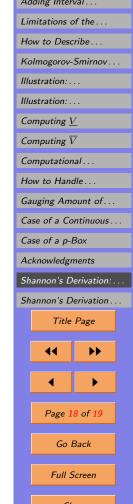
The authors are thankful to Bill Walster for fruitful discussions.

17. Shannon's Derivation: Reminder

- Situation: we know the probabilities p_1, \ldots, p_n of different alternatives.
- \bullet We repeat the selection N times.
- Let N_i be number of times when we get A_i .
- For big N, the value N_i is \approx normally distributed with average $a = p_i \cdot N$ and $\sigma = \sqrt{p_i \cdot (1 p_i) \cdot N}$.
- With certainty depending on k_0 , we conclude that

$$N_i \in [a - k_0 \cdot \sigma, a + k_0 \cdot \sigma].$$

- Let $N_{\text{con}}(N)$ be the number of situations for which N_i is within these intervals.
- Then, for N repetitions, we need $q(N) = \log_2(N_{\text{cons}})$ questions.
- Per repetition, we need S = q(N)/N questions.



18. Shannon's Derivation (cont-d)

- Shannon's theorem: $S \to -\sum p_i \cdot \log_2(p_i)$.
- Proof:

$$\frac{N!}{N_1!(N-N_1)!} \cdot \frac{N_{\text{cons}} \sim}{N_2!(N-N_1-N_2)!} \cdot \dots = \frac{N!}{N_1!N_2!\dots N_n!}$$

where $k! \sim (k/e)^k$. So,

$$N_{\rm cons} \sim \frac{\left(\frac{N}{e}\right)^{N_1}}{\left(\frac{N_1}{e}\right)^{N_1} \cdot \dots \cdot \left(\frac{N_n}{e}\right)^{N_n}}$$

Since $\sum N_i = N$, terms e^N and e^{N_i} cancel each other.

• Substituting $N_i = N \cdot f_i$ and taking logarithms, we get $\log_2(N_{\text{cons}}) \approx -N \cdot f_1 \cdot \log_2(f_1) - \ldots - N \cdot f_n \log_2(f_n).$

Limitations of . . . Adding Interval . . . Limitations of the . . . How to Describe . . . Kolmogorov-Smirnov . . . Illustration: . . . Illustration: . . . Computing VComputing \overline{V} Computational . . . How to Handle . . . Gauging Amount of . . . Case of a Continuous... Case of a p-Box Acknowledgments Shannon's Derivation: . . Shannon's Derivation... Title Page Page 19 of 19 Go Back Full Screen Close