Decision Making Under Interval Uncertainty as a Natural Example of a Quandle

Mahdokht Afravi and Vladik Kreinovich

Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA mafravi@miners.utep.edu, vladik@utep.edu

Outline Need for Decision Making Decision Making . . . To Make a Decision Selecting a Value from . . Natural Properties of ⊳ Twin Interval Uncertainty This Is A Quandle Main Result Home Page **>>** Page 1 of 20 Go Back Full Screen Close Quit

1. Outline

- In many real-life situations, we need to select an alternative from a set of possible alternatives.
- In many such situations, we have a well-defined objective function u(a) that describes our preferences.
- If we know the exact value of u(a) for each alternative a, then we select the alternative with the largest u(a).
- In practice, however, we usually know the consequences of each decision *a* only with some uncertainty.
- As a result, for each alternative a, we only know the interval of possible values $[\underline{u}(a), \overline{u}(a)]$.
- We show: decision making under interval uncertainty is an example of a *quandle* a knot-theory concept.

2. Need for Decision Making

- In many real-life situations, we need to select an alternative a from the list of possible alternatives; e.g.:
 - we want to select a design and/or location of a plant,
 - we want to select a financial investment, etc.
- In many such situations, we have a well-defined objective function u(a) that describes our preferences:
 - if we know the exact value of u(a) for each alternative a,
 - then we select the alternative with the largest value of u(a).

3. Decision Making Under Interval Uncertainty

- In practice, we usually only know the consequences of each decision with some uncertainty; often:
 - the only information that we have about the corresponding values of u(a)
 - is that u(a) is somewhere between the known bounds $\underline{u}(a)$ and $\overline{u}(a)$,
 - i.e., that $u(a) \in [\underline{u}(a), \overline{u}(a)]$.
- How can we make a decision under such interval uncertainty?

4. To Make a Decision under Interval Uncertainty, We Need to Select a Value from the Interval

- To make a decision under interval uncertainty, we need, in particular, to be able to compare:
 - the alternative a for which we only know the interval of possible values of u(a),
 - with alternatives b for which we know the exact utility values u(b).
- For some values u(b), the alternative b is better; for others, a is better.
- Clearly, if a is better than b and u(b) > u(c), then a should be better than c as well.
- Similarly, if a is worse than b and u(b) < u(c), then a should be worse than c as well.

5. Selecting a Value from the Interval (cont-d)

- Thus, there should be a threshold value u_0 that separates:
 - alternatives b for which a is better
 - from alternatives b' for which a is better.
- In other words, when we make decisions, we compare u(b) with this threshold value u_0 .
- This value u_0 thus represents the utility of the alternative for which we only know the interval $[\underline{u}(a), \overline{u}(a)]$.
- We therefore need to be able, given an interval $[\underline{u}(a), \overline{u}(a)]$, to produce an equivalent utility value u_0 .
- Let us denote this value u_0 by $\overline{u}(a) \triangleright \underline{u}(a)$.
- *Main problem:* which operation ▷ should we select?

6. Natural Properties of ⊳

- In order to answer the above questions, let us analyze what are the natural properties of the operation $a \triangleright b$.
- If we know the exact value of u(a), then the equivalent value is simply equal to x: $x \triangleright x = x$.
- Another reasonable property is monotonicity: if x < x', then x > y > x' > y.
- Small changes in x and y should lead to small changes in the equivalent value $x \triangleright y$.
- In other words, the operation \triangleright should be *continuous*.

7. Twin Interval Uncertainty

- In practice:
 - instead of knowing the exact bounds $\underline{u}(a)$ and $\overline{u}(a)$ on u(a),
 - we may only know the bounds on each of these bounds:

$$\underline{u}(a) \in [\underline{u}^{-}(a), \underline{u}^{+}(a)] \text{ and } \overline{u}(a) \in [\overline{u}^{-}(a), \overline{u}^{+}(a)].$$

- Such a situation is known as twin interval uncertainty.
- For example:
 - we may know the lower bound z of the corresponding interval,
 - but we only know that the upper bound is between y and x.
- We can analyze this situations in two different ways.

Need for Decision Making Decision Making . . . To Make a Decision . . . Selecting a Value from . . Natural Properties of ⊳ Twin Interval Uncertainty This Is A Quandle Main Result Home Page Title Page **>>** Page 8 of 20 Go Back Full Screen

Close

Quit

Outline

8. Twin Interval Uncertainty (cont-d)

- \bullet First, all we know about the upper bound is that it is between y and x.
- Thus, this upper bound is therefore equivalent to the value $y \triangleright x$.
- Now, we have an interval with an exact lower bound z and an exact upper bound $x \triangleright y$.
- We can now apply the operation \triangleright to estimate the equivalent value of this interval as $(x \triangleright y) \triangleright z$.
- There is also an alternative approach.
- For each possible value v between y and x, we have an interval [z, v] with equivalent value $v \triangleright z$.

9. Twin Interval Uncertainty (cont-d)

- Due to monotonicity, the equivalent value $v \triangleright z$:
 - is the smallest when v is the smallest, i.e., when v = y, and
 - it is the largest when v is the largest, i.e., when v = x.
- These equivalent values form an interval $[y \triangleright z, x \triangleright z]$.
- The equivalent value of this interval is $(x \triangleright z) \triangleright (y \triangleright z)$.
- It is reasonable to require that these two approaches lead to the same value: $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.
- Similarly, we can consider situations in which:
 - we know the upper bound x of the interval, but
 - \bullet we only know the lower bound is between y and z.
- In this case, a similar analysis leads to the requirement that $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$.

10. This Is A Quandle

- If we know that $u \in [\underline{u}, \overline{u}]$, then $\underline{u} \leq u \leq \overline{u}$, so we should have $u_0 \in [\underline{u}, \overline{u}]$.
- Interestingly, the above properties (plus an appropriate monotonicity) are well known in knot theory:

$$x \rhd x = x, \quad (x \rhd y) \rhd z = (x \rhd z) \rhd (y \rhd z),$$

$$(y \rhd z) = (x \rhd y) \rhd (x \rhd z).$$

- Sets with operations satisfying these properties are knows as *quandles*.
- Let us use this relation to describe possible operations
 ▷ for decision making under interval uncertainty.

11. Discussion

- In general, the operation ▷ is monotonically increasing with respect to each of its variables.
- For differentiable functions, this implies that both partial derivatives are non-negative.
- Our result, however, requires a stronger condition: that both derivatives are always positive.
- We also need to require:
 - not only that $x \triangleright y \in [y, x]$,
 - but also that $x \triangleright y \in (y, x)$ for y < x,
 - i.e., that the degenerate cases $x \triangleright y = x$ and $x \triangleright y = y$ are excluded.
- Under these conditions, we prove the following result.

- We say that a differentiable function $f(x_1, ..., x_m)$ is strongly increasing if all its partial derivatives are > 0.
- Let $x \triangleright y$ be a continuously differentiable strongly increasing function defined for all $x \ge y$ for which:

$$x \rhd x = x, \quad (x \rhd y) \rhd z = (x \rhd z) \rhd (y \rhd z),$$
 $(y \rhd z) = (x \rhd y) \rhd (x \rhd z), \quad x \rhd y \in (y, x) \text{ when } y < x.$

• Then, for some continuous strictly increasing function f(x) and for some $\alpha \in (0,1)$:

$$x \triangleright y = f^{-1}(\alpha \cdot f(x) + (1 - \alpha) \cdot f(y))$$

13. Discussion

- In other words, after an appropriate monotonic rescaling $x \to X = f(x)$, we get $X \triangleright Y = \alpha \cdot X + (1-\alpha) \cdot Y$.
- This way of making decisions under interval uncertainty is well known.
- This combination of best-case and worst-case was originally proposed by the Nobelist Leo Hurwicz.
- Our result provides a new justification for Hurwicz's criterion.
- Caution: by requiring that $x \triangleright y \in (y, x)$ when y < x, we exclude the following two extreme cases:
 - the super-optimistic case $\alpha = 1$, when the decision maker only takes into account the best case; and
 - the super-pessimistic case $\alpha = 0$, when the decision maker only takes into account the worst case.

14. Open Questions

- What if we only require that $x \triangleright y \in [y, x]$?
- What if we only require monotonicity and allow zero values of the derivatives?
- What if we only require continuity instead of differentiability?

15. Need for Improper Intervals

- It is sometimes useful to consider *improper* intervals [a, b], with a > b.
- Let us consider the case when a decision maker is participating in two different situations:
 - in the first situation, the decision maker gains some amount $u \in [\underline{u}, \overline{u}]$;
 - in the second situation, the decision maker gains some amount $v \in [\underline{v}, \overline{v}]$.
- The possible values of the amount u + v gained by the decision maker form an interval $[\underline{u} + \underline{v}, \overline{v} + \overline{v}]$.
- Suppose that:
 - after decision makers gain $u \in [\underline{u}, \overline{u}],$
 - we want to compensate them, so that each of them gains $\underline{u} + \overline{u}$ (double the average gain).

16. Need for Improper Intervals (cont-d)

- Possible values of the compensation v form the interval $[\underline{u}, \overline{u}]$.
- However, we want to avoid the conclusion that $u + v \in [\underline{u} + \underline{u}, \overline{u} + \overline{u}].$
- We thus say that the possible values of the compensation amount v form an improper interval $[\overline{u}, \underline{u}]$.
- In this case, $u \in [\underline{u}, \overline{u}]$ and $v \in [\overline{u}, \underline{u}]$ imply that $u + v \in [\underline{u} + \overline{u}, \overline{u} + \underline{u}].$
- So, we conclude correctly this time that the overall compensation is always equal to $u + \overline{u}$.
- It is reasonable to extent the question of selecting an appropriate value u_0 to such improper intervals as well.
- In this case, the operation $x \triangleright y$ is defined for all possible pairs of real numbers (x, y).

17. Results

- If we allow improper intervals,
 - then we can relax some of the restrictions that we placed on the operation ▷ in Proposition 1
 - but for that, we need to require that *both* conditions be satisfied:

$$(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z), \ (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z).$$

• If a function $x \triangleright y$ is continuous, strictly increasing, and satisfies both conditions, then

$$x \triangleright y = f^{-1}(\alpha \cdot f(x) + (1 - \alpha) \cdot f(y)).$$

• If a function $x \triangleright y$ is differentiable, strictly increasing, and satisfies one of the conditions, then

$$x \triangleright y = f^{-1}(\alpha \cdot f(x) + (1 - \alpha) \cdot f(y)).$$

Outline

Need for Decision Making

Decision Making...

To Make a Decision . . .

Selecting a Value from . .

Natural Properties of ▷

Twin Interval Uncertainty

This Is A Quandle

Main Result

Home Page

Title Page

Page 18 of 20

Go Back

Full Screen

Close

Quit

18. Results (cont-d)

- If a function x > y is continuous, strictly increasing,
- satisfies one of the conditions

$$(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z), \quad (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z),$$

• and for every x and y, there exist z' and z'' for which $x \triangleright z' = z'' \triangleright x = y$, then

$$x \triangleright y = f^{-1}(\alpha \cdot f(x) + (1 - \alpha) \cdot f(y)).$$

Outline

Need for Decision Making

Decision Making...

To Make a Decision...

Selecting a Value from . . .

Natural Properties of ⊳

Twin Interval Uncertainty

This Is A Quandle

Main Result

Home Page

Title Page

Quit

19. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.

