For statistical analysis of big data, interval uncertainty is needed

Olga Kosheleva¹ and Vladik Kreinovich²

Departments of ¹Teacher Education and ²Computer Science University of Texas at El Paso, 500 W. University El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu

1. Statistical testing: a brief reminder

- A usual statistical approach to processing data x_1, \ldots, x_n is as follows:
 - we come up with a model e.g., based on the training part of the data and
 - then we test whether this model adequately describes the remaining testing part of the data.
- For example, it may turns out that the observations are consistent with a normal distribution with mean m and standard deviation σ .
- Then we can use the chi-square criterion and check whether, or appropriate values $\chi^2_{n,1-\alpha}$ and $\chi^2_{n,\alpha}$, we have

$$\chi_{n,1-\alpha}^2 \le \sum_{i=1}^n \frac{(x_i - m)^2}{\sigma^2} \le \chi_{n,\alpha}^2.$$

2. Statistical testing: a brief reminder (cont-d)

- These tests are designed in such a way that:
 - when the actual distributions is the assumed one,
 - this test returns "true" with frequency close to 1.
- Also, when the actual distribution is different from the assumed one, then:
 - for sufficiently large n above a certain threshold n_0 -
 - the corresponding test fails with frequency close to 1.
- This traditional statistical approach has worked successfully for more than a century.

3. Formulation of the problem

- However:
 - with the emergence of big data, when we have millions and even billions of data points,
 - this traditional statistical approach often fails.
- The reason for this failure is clear.
- In most applications areas e.g., in econometrics all statistical models are approximate.
- When n was reasonably small, much smaller than the threshold value n_0 , the tests still worked.
- However, big data often means $n > n_0$, so the tests fail.
- As a result:
 - either we cannot find a model that fits the training data,
 - or, if such a model is found, we cannot show that it fits the testing data.

4. Formulation of the problem (cont-d)

- This phenomenon is known as macronumerosity.
- This is well-known problem in many application areas e.g., in modeling climate change.

5. Statistical approach to this problem does not work

- That the model is approximate means that there are some close values $\tilde{x}_i \approx x_i$ that fit this model.
- A typical statistical idea would be to find the distribution for the approximation error $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i$.
- However, in this case, we would still assume some exact distribution for x_i .
- So this brings us back to the same problem.

6. Intervals form a natural solution

- From the interval viewpoint, a natural solution out of this seemingly vicious circle is:
 - not to assume any specific distribution for Δx_i , but
 - instead to use interval uncertainty, i.e., to assume that all the values Δx_i are within an interval $[-\Delta, \Delta]$.

• In this case:

- for each model and each corresponding test $C(x_1, \ldots, x_n) \leq C_0$ that is not satisfied for the actual data,
- we can describe the degree to which data fits the model.
- We can do it by computing the smallest Δ for which some Δ -close values \widetilde{x}_i satisfy the test.
- Usually, the values Δx_i are small, so we can ignore terms quadratic in Δx_i .

7. Intervals form a natural solution (cont-d)

• In this linear approximation, we have

$$\widetilde{C} \stackrel{\text{def}}{=} C(\widetilde{x}_1, \dots, \widetilde{x}_n) =$$

$$C(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) = C(x_1, \dots, x_n) + \sum_{i=1}^n C_{i,i} \cdot \Delta x_i.$$

• Here C_{i} are partial derivatives of C with respect to x_{i} :

$$C_{,i} \stackrel{\text{def}}{=} \frac{\partial C}{\partial x_i}.$$

• We want to make sure that $\widetilde{C} \leq C_0$, i.e., that

$$\sum_{i=1}^n C_{,i} \cdot (-\Delta x_i) \ge C(x_1, \dots, x_n) - C_0.$$

8. Intervals form a natural solution (cont-d)

• When $|\Delta x_i| \leq \Delta$, the largest value of the sum $\sum_{i=1}^n C_{,i} \cdot (-\Delta x_i)$ is

$$\sum_{i=1}^{n} |C_{,i}| \cdot \Delta = \Delta \cdot \sum_{i=1}^{n} |C_{,i}|.$$

• Thus, the smallest Δ for which we can get $\widetilde{C} \leq C_0$ is equal to

$$\Delta = \frac{|C(x_1, \dots, x_n) - C_0|}{\sum_{i=1}^n |C_{ii}|}.$$

• Then, e.g., between two models with the same number of parameters, we can select the model with the smallest Δ .

9. References

- A. Nichols and M. E. Schaffer, "Practical steps to improve specification testing", In: N. N. Thach, D. T. Ha, N. D. Trung, and V. Kreinovich (eds.), *Prediction and Causality in Econometrics and Related Topics*, Springer, Cham, Switzerland, 2022, pp. 75–88.
- M. E. Schaffer, "Null hypothesis misspecification testing revisited: how (not) to test orthogonality conditions", In: V. Kreinovich, W. Yamaka, and S. Leurcharusmee (eds.), *Data Science for Econometrics and Related Topics*, Springer, Cham, Switzerland, to appear.

10. Acknowledgments

This work was supported in part:

- by the US National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
 - HRD-1834620 and HRD-2034030 (CAHSI Includes),
 - EAR-2225395 (Center for Collective Impact in Earthquake Science C-CIES),
- by the AT&T Fellowship in Information Technology, and
- by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Focus Program SPP 100+ 2388, Grant Nr. 501624329,