Propagation of Interval and Probabilistic Uncertainty in Cyberinfrastructure-Related Data Processing and Data Fusion

Christian Servin

Computational Science Program University of Texas at El Paso El Paso, Texas 79968, USA christians@utep.edu

Need for Data . . . Need to Take ... Expert Estimates and ... How to Propagate... How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page **>>** Page 1 of 91 Go Back Full Screen Close Quit

1. Need for Data Processing and Data Fusion

- For many quantities y, it is not easy (or even impossible) to measure them directly.
- Instead, we measure related quantities x_1, \ldots, x_n , and use the known relation $y = f(x_1, \ldots, x_n)$ to estimate y.
- Such data processing is especially important for cyberinfrastructure-related heterogenous data.
- Example of heterogenous data geophysics:
 - first-arrival passive (from actual earthquakes) and active seismic data (from seismic experiments);
 - gravity data;
 - surface waves, etc.
- Before we start processing data, we need to first *fuse* data points corresponding to the same quantity.

Need to Take Uncertainty into Consideration

- The result \tilde{x} of a measurement is usually somewhat different from the actual (unknown) value x.
- Usually, the manufacturer of the measuring instrument (MI) gives us a bound Δ on the measurement error:

$$|\Delta x| \leq \Delta$$
, where $\Delta x \stackrel{\text{def}}{=} \widetilde{x} - x$

- Once we know the measurement result \widetilde{x} , we can conclude that the actual value x is in $[\widetilde{x} - \Delta, \widetilde{x} + \Delta]$.
- In some situations, we also know the probabilities of different values $\Delta x \in [-\Delta, \Delta]$.
- In this case, we can use statistical techniques.
- However, often, we do not know these probabilities; we only know that x is in the interval $\mathbf{x} \stackrel{\text{def}}{=} [\widetilde{x} - \Delta, \widetilde{x} + \Delta].$
- In this case, we need to process this interval data.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards...

Home Page

Title Page

>>

Page 3 of 91

Go Back

Full Screen

Close

3. Measurement Uncertainty: Traditional Approach

- Usually, a meas. error $\Delta x \stackrel{\text{def}}{=} \widetilde{x} x$ is subdivided into random and systematic components $\Delta x = \Delta x_s + \Delta x_r$:
 - the systematic error component Δx_s is usually defined as the expected value $\Delta x_s = E[\Delta x]$, while
 - the random error component is usually defined as the difference $\Delta x_r \stackrel{\text{def}}{=} \Delta x \Delta x_s$.
- The random errors Δx_r corresponding to different measurements are usually assumed to be independent.
- For Δx_s , we only know the upper bound Δ_s s.t. $|\Delta x_s| \leq \Delta_s$, i.e., that Δx_s is in the interval $[-\Delta_s, \Delta_s]$.
- Because of this fact, *interval computations* are used for processing the systematic errors.
- Δx_r is usually characterized by the corr. probability distribution (usually Gaussian, with known σ).

Need to Take . . . Expert Estimates and . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 4 of 91 Go Back Full Screen Close Quit

4. Expert Estimates and Fuzzy Data

- There is no guarantee of expert's accuracy.
- We can only provide bounds which are valid with some degree of certainty.
- This degree of certainty is usually described by a number from the interval [0, 1].
- So, for each $\beta \in [0, 1]$, we have an interval $\mathbf{x}(\alpha)$ containing the actual value x with certainty $\alpha = 1 \beta$.
- The larger certainty we want, the broader should the corresponding interval be.
- So, we get a nested family of intervals corresponding to different values α .
- Alternative: for each x, describe the largest α for which x is in $\mathbf{x}(\alpha)$; this α_{largest} is a membership function $\mu(x)$.

5. How to Propagate Uncertainty in Data Processing

- We know that $y = f(x_1, \ldots, x_n)$.
- We estimate y based on the approximate values \widetilde{x}_i as $\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$.
- Since $\widetilde{x}_i \neq x_i$, we get $\widetilde{y} \neq y$; it is desirable to estimate the approximation error $\Delta y \stackrel{\text{def}}{=} \widetilde{y} y$.
- Usually, measurements are reasonably accurate, i.e., measurement errors $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i x_i$ are small.
- Thus, we can keep only linear terms in Taylor expansion: $\Delta y = \sum_{i=1}^{n} C_i \cdot \Delta x_i$, where $C_i = \frac{\partial f}{\partial x_i}$.
- For systematic error, we get a bound $\sum_{i=1}^{n} |C_i| \cdot \Delta_{si}$.
- For random error, we get $\sigma^2 = \sum_{i=1}^n C_i^2 \cdot \sigma_i^2$.

Need for Data...

Need to Take...

Expert Estimates and . . .

How to Propagate...

How to Propagate...

Chapter 2: Towards...

Chapter 3: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Home Page

Title Page

Page 6 of 91

Go Back

Full Screen

Close

6. How to Propagate Uncertainty in Data Fusion: Case of Probabilistic Uncertainty

- Reminder: we have several estimates $\widetilde{x}^{(1)}, \dots, \widetilde{x}^{(n)}$ of the same quantity x.
- Data fusion: we combine these estimates into a single estimate \tilde{x} .
- Case: each estimation error $\Delta x^{(i)} \stackrel{\text{def}}{=} \widetilde{x}^{(i)} x$ is normally distributed with 0 mean and known st. dev. $\sigma^{(i)}$.
- How to combine: use Least Squares, i.e., find \widetilde{x} that minimizes $\sum_{i=1}^{n} \frac{(\widetilde{x}^{(i)} \widetilde{x})^2}{2 \cdot (\sigma^{(i)})^2}$;

• Solution:
$$\widetilde{x} = \frac{\sum\limits_{i=1}^{n} \widetilde{x}^{(i)} \cdot (\sigma^{(i)})^{-2}}{\sum\limits_{i=1}^{n} (\sigma^{(i)})^{-2}}.$$

7. Data Fusion: Case of Interval Uncertainty

- In some practical situations, the value x is known with interval uncertainty.
- This happens, e.g., when we only know the upper bound $\Delta^{(i)}$ on each estimation error $\Delta x^{(i)}$: $|\Delta x^{(i)}| \leq \Delta_i$.
- In this case, we can conclude that $|x \widetilde{x}^{(i)}| \leq \Delta^{(i)}$, i.e., that $x \in \mathbf{x}^{(i)} \stackrel{\text{def}}{=} [\widetilde{x}^{(i)} \Delta^{(i)}, \widetilde{x}^{(i)} + \Delta^{(i)}].$
- Based on each estimate $\widetilde{x}^{(i)}$, we know that the actual value x belongs to the interval $\mathbf{x}^{(i)}$.
- Thus, we know that the (unknown) actual value x belongs to the intersection of these intervals:

$$\mathbf{x} \stackrel{\text{def}}{=} \bigcap_{i=1}^{n} \mathbf{x}^{(i)} = [\max(\widetilde{x}^{(i)} - \Delta^{(i)}), \min(\widetilde{x}^{(i)} + \Delta^{(i)})].$$

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 8 of 91 Go Back Full Screen Close Quit

8. Propagation of Uncertainty: Challenges

- In the ideal world:
 - we should have an *accurate* description of data uncertainty;
 - based on this description, we should use well-justified and efficient algorithms to propagate uncertainty.
- In *practice*, we are often not yet in this ideal situation:
 - the description of uncertainty is often only approximate,
 - the algorithms for uncertainty propagation are often *heuristics*, i.e., not well-justified, and
 - the algorithms for uncertainty propagation are often *not* very computationally *efficient*.

9. What We Do in This Dissertation

- In Chapter 2, we show that the traditional idea of random and systematic components is an approximation:
 - we also need *periodic* components;
 - this is important in environmental studies.
- In Chapter 3, on the example of a fuzzy *heuristic*, we show how a heuristic can be *formally justified*.
- In Ch. 4, we show how to process more *efficiently*; e.g.:
 - first, we process data type-by-type;
 - then, we fuse the resulting models.
- All these results assume that we have a good description of the uncertainty of the original data.
- In practice, we often need to extract this info from the data; extraction methods are described in Ch. 5.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 10 of 91 Go Back Full Screen Close Quit

10. Chapter 2: Towards More Accurate Description of Uncertainty

- Often, the differences $r = \Delta x s$ corr. to nearby times are strongly correlated.
- For example, meteorological sensors may have daytime or nighttime biases, or winter and summer biases.
- To capture this correlation, environmental scientists proposed a semi-heuristic 3-component model of Δx .
- In this model, the difference $\Delta x \Delta x_s$ is represented as a combination of:
 - a "truly random" error Δx_r (which is independent from one measurement to another), and
 - a new "periodic" component Δx_p .
- We provide a theoretical explanation for this heuristic three-component model.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 11 of 91 Go Back Full Screen Close Quit

11. Error Components: Analysis

- We want to represent measurement error $\Delta x(t)$ as a linear combination of several components.
- We consider the most detailed level of granularity, w/each component determined by finitely many parameters c_i .
- Each component is thus described by a finite-dimensional linear space

$$L = \{c_1 \cdot x_1(t) + \ldots + c_n \cdot x_n(t) : c_1, \ldots, c_n \in \mathbb{R}\}.$$

- In most applications, signals are smooth and bounded, so we assume that $x_i(t)$ is smooth and bounded.
- Finally, for a long series of observations, we can choose a starting point arbitrarily: $t \to t + t_0$.
- It is reasonable to require that this change keeps us within the same component, i.e.,

$$x(t) \in L \Rightarrow x(t+t_0) \in L.$$

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 12 of 91 Go Back Full Screen Close

Error Components: Main Result

• A function x(t) of one variable is called bounded if

$$\exists M \, \forall t \, (|x(t)| \leq M).$$

• We say that a class F of functions of one variable is shift-invariant if

$$\forall x(t) (x(t) \in F \Rightarrow \forall t_0 (x(t+t_0) \in F)).$$

• By an error component we mean a shift-invariant finitedimensional linear space of functions

$$L = \{c_1 \cdot x_1(t) + \ldots + c_n \cdot x_n(t) : c_i \in \mathbb{R}\}.$$

• Theorem: Every error component is a linear combination of the functions

$$x(t) = \sin(\omega \cdot t)$$
 and $x(t) = \cos(\omega \cdot t)$.

Need for Data . . . Need to Take . . .

Expert Estimates and . .

How to Propagate . . .

How to Propagate . . . Chapter 2: Towards...

Chapter 3: Towards...

Chapter 4: Towards...

Home Page Title Page

Chapter 5: Towards...

Go Back

Full Screen

Close

13. Practical Conclusions

- Let f be the measurements frequency (how many measurements we perform per unit time).
- When $\omega \ll f$, the values $\cos(\omega \cdot t)$ and $\sin(\omega \cdot t)$ practically do not change with time.
- Indeed, the change period is much larger than the usual observation period.
- Thus, we can identify such low-frequency components with *systematic* error component.
- When $\omega \gg f$, the phases of the values $\cos(\omega \cdot t_i)$ and $\cos(\omega \cdot t_{i+1})$ differ a lot.
- For all practical purposes, the resulting values of cosine or sine functions are independent.
- Thus, high-frequency components can be identified with random error component.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 14 of 91 Go Back Full Screen Close Quit

14. Practical Conclusions (cont-d)

- Result: every error component is a linear combination of $\cos(\omega \cdot t)$ and $\sin(\omega \cdot t)$.
- Notation: let f be the measurements frequency (how many measurements we perform per unit time).
- Reminder:
 - we can identify low-frequency components ($\omega \ll f$) with systematic error component;
 - we can identify high-frequency ones $(\omega \gg f)$ with random error component.
- Easy to see: all other error components $\cos(\omega \cdot t)$ and $\sin(\omega \cdot t)$ are periodic.
- Conclusion: we have indeed justified to the semi-empirical 3-component model of measurement error.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page Page 15 of 91 Go Back Full Screen Close Quit

15. Chapter 3: Towards Justification of Heuristic Techniques for Processing Uncertainty

- As we have mentioned, some methods for processing uncertainty are *heuristic*.
- Such methods lack justification and are, therefore, less reliable.
- Usually, techniques for processing interval and probabilistic uncertainty are well-justified.
- However, many techniques for processing expert (fuzzy) data are still heuristic.
- In Chapter 3:
 - we consider a practically efficient heuristic fuzzy technique for decision making under uncertainty;
 - we show how this heuristic can be formally justified.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 16 of 91 Go Back Full Screen Close Quit

16. Traditional Approach to Decision Making: Reminder

- The quality of each possible alternative is characterized by the values of several quantities.
- For example, when we buy a car, we are interested in its cost, its energy efficiency, its power, size, etc.
- For each of these quantities, we usually have some desirable range of values.
- Often, there are several different alternatives all of which satisfy all these requirements.
- The traditional approach assumes that there is an objective function that describes the user's preferences.
- We then select an alternative with the largest possible value of this objective function.

17. Traditional Approach to Decision Making: Limitations

- The traditional approach to decision making assumes:
 - that the user knows exactly what he or she wants
 i.e., knows the objective function and
 - that the user also knows exactly what he or she will get as a result of each possible decision.
- In practice, the user is often uncertain:
 - the user is often uncertain about his or her own preferences, and
 - the user is often uncertain about possible consequences of different decisions.
- It is therefore desirable to take this uncertainty into account when we describe decision making.

18. Fuzzy Target Approach (Huynh-Nakamori)

- For each numerical characteristic of a possible decision, we form two fuzzy sets:
 - $-\mu_i(x)$ describing the users' ideal value;
 - $-\mu_a(x)$ describing the users' impression of the actual value.
- For example, a person wants a well done steak, and the steak comes out as medium well done.
- In this case, $\mu_i(x)$ corresponds to "well done", and $\mu_a(x)$ to "medium well done".
- The simplest "and"-operation (t-norm) is min(a, b); so, the degree to which x is both actual and desired is

$$\min(\mu_a(x), \mu_i(x)).$$

• The degree to which there exists x which is both possible and desired is $d = \max \min(\mu_a(x), \mu_i(x))$.

19. Fuzzy Target Approach: Successes and Remaining Problems

- The above approach works well in many applications.
- Example: it predicts how customers select a handcrafted souvenir when their ideal ones is not available.
- *Problem:* this approach is heuristic, it is based on selecting:
 - the simplest possible membership function and
 - the simplest possible "and"- and "or"-operations.
- Interestingly, we get *better* predictions than with more complex membership functions and "and"-operations.
- In Chapter 3, we provide a justification for the above semi-heuristic target-based fuzzy decision procedure.

20. Chapter 4: Towards More Computationally Efficient Techniques for Processing Uncertainty

- Fact: computations often take a lot of time.
- One of the main reasons: we process a large amount of data.
- So, a natural way to *speed up* data processing is:
 - to divide the data into smaller parts,
 - to process each smaller part separately, and then
 - to combine the results of data processing.
- In particular, when we are processing huge amounts of heterogenous data, it makes sense:
 - to first process different types of data type-by-type,
 - and then to fuse the resulting models.
- This idea is explored in the first sections of Chapter 4.

Need for Data...

Need to Take...

Expert Estimates and . . . How to Propagate . . .

How to Propagate...

Chapter 2: Towards...

Chapter 3: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Home Page

Title Page

Page 21 of 91

Go Back

Full Screen

Close

21. Data Fusion under Interval Uncertainty: Reminder

- Frequent practical situation:
 - we are interested in a quantity u;
 - we have several measurements and/or expert estimates u_1, \ldots, u_n of u.
- Objective: fuse these estimates into a single more accurate estimate.
- Interval case: each u_i is known with interval uncertainty.
- Formal description: for each i, we know the interval $\mathbf{u}_i = [u_i \Delta_i, u_i + \Delta_i]$ containing u.
- Solution: u belongs to the intersection $\mathbf{u} \stackrel{\text{def}}{=} \bigcap_{i=1}^{n} \mathbf{u}_{i}$ of these intervals.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 22 of 91 Go Back Full Screen Close Quit

- Probabilistic uncertainty: each measurement error $\Delta u_i \stackrel{\text{def}}{=}$ $u_i - u$ is normally distributed w/0 mean and known σ_i .
- Technique: the Least Squares Method (LSM)

$$\sum_{i=1}^{n} \frac{(u-u_i)^2}{2\sigma_i^2} \to \min.$$

• Resulting estimate: is

$$u = \frac{\sum_{i=1}^{n} u_i \cdot \sigma_i^{-2}}{\sum_{i=1}^{n} \sigma_i^{-2}}.$$

• Standard deviation:

$$\sigma^2 = \frac{1}{\sum\limits_{i=1}^n \sigma_i^{-2}}, \quad \text{with } \sigma^2 \ll \sigma_i^2.$$

Need for Data . . .

Need to Take . . .

Expert Estimates and . .

How to Propagate...

How to Propagate...

Chapter 2: Towards... Chapter 3: Towards...

Chapter 4: Towards...

Chapter 5: Towards... Home Page

Title Page

Page 23 of 91

Go Back

Full Screen

Close

23. New Problem: Different Resolution

- Traditional data fusion: fusing measurement results with different accuracy.
- Additional problem: different measurements also have different resolution.
- Case study geosciences: estimating density u_1, \ldots, u_n at different locations and depths.
- Examples of different geophysical estimates:
 - Seismic data leads to higher-resolution estimates $\widetilde{u}_1, \dots, \widetilde{u}_n$ of the density values.
 - Gravity data leads to lower-resolution estimates, i.e., estimates \widetilde{u} for the weighted average

$$u = \sum_{i=1}^{n} w_i \cdot u_i.$$

24. Why This Is Important

- Reminder: there are many sources of data for Earth models:
 - first-arrival passive seismic data (from the actual earthquakes),
 - first-arrival active seismic data (from the seismic experiments),
 - gravity data,
 - surface waves, etc.
- At present: each of these datasets is processed separately, resulting in several different Earth models.
- Fact: these models often provide complimentary geophysical information.
- *Idea*: all these models describe the properties of the same Earth, so it is desirable to combine them.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 25 of 91 Go Back Full Screen Close Quit

25. New Idea: Model Fusion

- Objective: to combine the information contained in multiple complementary datasets.
- *Ideal approach:* it is desirable to come up with techniques for joint inversion of these datasets.
- *Problem:* designing such joint inversion techniques is an important theoretical and practical challenge.
- Status: such joint inversion methods are being developed.
- Practical question: what to do while these methods are being developed?
- Our practical solution: fuse the Earth models coming from different datasets.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 26 of 91 Go Back Full Screen Close Quit

- Objective: find the values u_1, \ldots, u_n of the desired quantity in different spatial cells.
- Geophysical example: u_i is the density at different

 $1 \text{ km} \times 1 \text{ km} \times 1 \text{ km cells.}$

- *Input:* we have
 - high-resolution measurements, i.e., values $\widetilde{u}_i \approx u_i$ with st. dev. σ_i ;
 - lower-resolution measurements, i.e., values $\widetilde{u}^{(k)}$ corresponding to blocks of neighboring cells:

$$\widetilde{u}^{(k)} \approx \sum_{i} w_i^{(k)} \cdot u_i$$
, with st. dev. $\sigma^{(k)}$.

• Additional information: a lower-resolution measurement result is representative of values within the block.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 27 of 91 Go Back Full Screen Close Quit

27. Model Fusion: Statistical Case (cont-d)

- Formal description: when $w_i^{(k)} \neq 0$, we have $\widetilde{u}^{(k)} \approx u_i$, with st. dev. $\delta^{(k)}$.
- How to estimate $\delta^{(k)}$: as the empirical st. dev. within the block.
- High-resolution values (reminder): $\widetilde{u}_i \approx u_i \text{ w/st. dev. } \sigma_i$.
- Lower-resolution values (reminder):

$$\widetilde{u}^{(k)} \approx \sum_{i} w_i^{(k)} \cdot u_i$$
, with st. dev. $\sigma^{(k)}$.

• LSM Solution: minimize the sum

$$\sum_{i} \frac{(u_{i} - \widetilde{u}_{i})^{2}}{\sigma_{i}^{2}} + \sum_{i} \sum_{k} \frac{(u_{i} - \widetilde{u}^{(k)})^{2}}{(\delta^{(k)})^{2}} + \sum_{k} \frac{(\widetilde{u}^{(k)} - \sum_{i} w_{i}^{(k)} \cdot u_{i})^{2}}{(\sigma^{(k)})^{2}}.$$

• How: differentiating w.r.t. u_i , we get a system of linear equations with unknowns u_1, \ldots, u_n .

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page

44 >>

4

Page 28 of 91

Go Back

Full Screen

Close

28. Model Fusion: Interval Case

- Quantities of interest: values u_1, \ldots, u_n of the desired quantity in different spatial cells.
- Objective: find the ranges $\mathbf{u}_1, \dots, \mathbf{u}_n$ of possible values of u_1, \dots, u_n .
- High-resolution measurements: values $\widetilde{u}_i \approx u_i$ with bound Δ_i :

$$\widetilde{u}_i - \Delta_i \le u_i \le \widetilde{u}_i + \Delta_i.$$

• Lower-resolution measurements: values $\widetilde{u}^{(k)}$ corresponding to blocks of neighboring cells:

$$\widetilde{u}^{(k)} \approx \sum_{i} w_i^{(k)} \cdot u_i$$
, with bound $\Delta^{(k)}$.

• Resulting constraint:

$$\widetilde{u}^{(k)} - \Delta^{(k)} \le \sum_{i} w_i^{(k)} \cdot u_i \le \widetilde{u}^{(k)} + \Delta^{(k)}.$$

Model Fusion: Interval Case (cont-d) 29.

• Additional information: a priori bounds on u_i :

$$\underline{u}_i \le u_i \le \overline{u}_i$$
.

• Additional information: a priori bounds on the changes between neighboring cells:

$$-\delta_{ij} \le u_i - u_j \le \delta_{ij}.$$

• High-resolution measurements (reminder):

$$\widetilde{u}_i - \Delta_i \le u_i \le \widetilde{u}_i + \Delta_i.$$

• Lower-resolution measurements (reminder):

$$\widetilde{u}^{(k)} - \Delta^{(k)} \le \sum_{i} w_i^{(k)} \cdot u_i \le \widetilde{u}^{(k)} + \Delta^{(k)}.$$

• Objective: minimize and maximize each u_i under these constraints.

Need for Data . . . Need to Take . . .

Expert Estimates and . .

How to Propagate . . .

Chapter 2: Towards...

How to Propagate . . .

Chapter 3: Towards... Chapter 4: Towards...

Chapter 5: Towards...

Title Page

Home Page

>>

Page 30 of 91

Go Back

Full Screen

Close

30. Model Fusion: Interval Solution

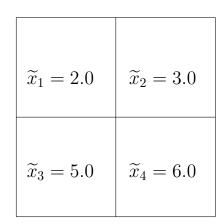
- Problem. Minimize (Maximize) u_i under the following constraints:
 - $\underline{u}_i \le u_i \le \overline{u}_i$.
 - $\bullet -\delta_{ij} \le u_i u_j \le \delta_{ij}.$
 - $\bullet \widetilde{u}_i \Delta_i \le u_i \le \widetilde{u}_i + \Delta_i.$
 - $\bullet \ \widetilde{u}^{(k)} \Delta^{(k)} \le \sum_{i} w_i^{(k)} \cdot u_i \le \widetilde{u}^{(k)} + \Delta^{(k)}.$
- Current solution method: linear programming.
- Objective: provide more efficient algorithms for specific geophysical cases.
- Preliminary results: some such algorithms have been developed.

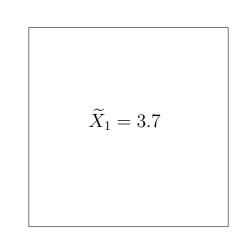
31. Numerical Experiments

- What we have done: proof-of-concept experiments.
- Simplifications:
 - equal weights w_i ;
 - simplified datasets.
- Conclusion: the fused model improves accuracy and resolution of different Earth models.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 32 of 91 Go Back Full Screen Close Quit

32. Model Fusion: Input Data, $\widetilde{X}_1 \neq \frac{1}{4} \cdot \sum_{i=1}^{4} \widetilde{x}_i$





Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page Page 33 of 91 Go Back Full Screen Close Quit

33. Result of Model Fusion:
$$\widetilde{X}_1 = \frac{1}{4} \cdot \sum_{i=1}^4 x_i$$

$x_1 = 1.7$	$x_2 = 2.7$
$x_3 = 4.7$	$x_4 = 5.7$

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page Page 34 of 91 Go Back Full Screen Close Quit

34. Example Where Fuzzy Information Helps

- In machine learning:
 - we know how to classify several known objects, and
 - we want to learn how to classify new objects.
- For example, in a biomedical application:
 - we have microarray data corresponding to healthy cells and
 - we have microarray data corresponding to different types of tumors.
- Based on these samples, we would like to be able, given a microarray data, to decide
 - whether we are dealing with a healthy tissue or with a tumor, and
 - if it is a tumor, what type of cancer does the patient have.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 35 of 91 Go Back Full Screen Close Quit

35. Chapter 5: Towards Better Ways of Extracting Information About Uncertainty from Data

- Previous methods assume that we have a good description of the uncertainty.
- In practice, often, we do not have this information.
- We need to extract uncertainty information from the data.
- In Chapter 5, we describe how this uncertainty information can be extracted from the data.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 36 of 91 Go Back Full Screen Close Quit

36. Extracting Uncertainty from Data: What Is Known

- Traditional approach: use a "standard" (more accurate) measuring instrument SMI.
- *Idea*: values \widetilde{x}_S measured by SMI are accurate: $\widetilde{x}_S \approx x$, so $\widetilde{x} \widetilde{x}_S \approx \Delta x \stackrel{\text{def}}{=} \widetilde{x} x$.
- Limitation: for cutting-egde measurements, we do not have more accurate instruments, these are the best.
- Example: the Eddy convariance tower provides the best estimates for Carbon flux.
- *Idea*: if we have two similar measuring instruments, we can estimate $\Delta x^{(1)} \Delta x^{(2)}$ as $\widetilde{x}^{(1)} \widetilde{x}^{(2)}$.
- If both error are normally distributed with st. dev. σ , then $\Delta x^{(1)} \Delta x^{(2)}$ is also normal, with variance $2\sigma^2$.
- So, we can determine σ from observations.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 37 of 91 Go Back Full Screen Close Quit

37. Normally Distributed Measurement Errors with Mean 0 and Unknown Variance V

- If we have two similar MIs, then $\widetilde{x}^{(1)} \widetilde{x}^{(2)} = \Delta x^{(1)} \Delta x^{(2)}$ is normally distributed w/variance V' = 2V.
- From the sample of differences, we estimate V' and estimate V as V'/2.
- Example: two nearby Eddy Covariance towers.
- In geosciences, we usually have only one seismic map, only one gravity map, etc.
- In general, we have several measurement results $\widetilde{x}^{(i)}$ with variances V_i .
- Here, the variance e_{ij} of the difference $\widetilde{x}^{(i)} \widetilde{x}^{(j)}$ is equal to $e_{ij} = V_i + V_j$.
- We have 3 equations $e_{12} = ..., e_{23} = ..., e_{13} = ...$ for 3 unknown variances, so, e.g., $V_1 = \frac{e_{12} + e_{13} e_{23}}{2}$.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 38 of 91 Go Back Full Screen

Close

38. Need to Go Beyond Normal Distributions, and Resulting Problem

- The distribution of measurement errors is sometimes not normal (e.g., in measuring fluxes).
- In such cases, in addition to variance V, we need to know skewness and other characteristics.
- In general, reconstruction of an asymmetric distribution is not unique.
- Proof: Δx and $\Delta y = -\Delta x$ lead to the same distribution for differences $\widetilde{x}^{(1)} \widetilde{x}^{(2)} = \Delta x^{(1)} \Delta x^{(2)}$.
- Natural questions:
 - which characteristics of the distribution Δx can we reconstruct?
 - what are efficient *algorithms* for this reconstruction?

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 39 of 91 Go Back Full Screen Close Quit

39. Extracting Uncertainty from Data: Main Results

- Problem: if distribution of $\Delta x^{(i)}$ is skewed, we cannot distinguish between two distributions:
 - the distribution of $\Delta x^{(i)}$, and
 - its mirror image, the distribution of $-\Delta x^{(i)}$.
- Our results:
 - this is the only non-uniqueness, and
 - modulo this non-uniqueness, we can effectively reconstruct the distribution of $\Delta x^{(i)}$.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 40 of 91 Go Back Full Screen Close Quit

40. How to Gauge the Accuracy

- Problem: find a function $\rho(z)$ which satisfies the following two conditions:
 - $\rho(z) \ge 0$ for all z, and
 - $|F(\omega)|^2 = D(\omega)$ for given $D(\omega)$ (Fourier transform of the distribution of $\widetilde{x}^{(1)} \widetilde{x}^{(2)}$).
- *Method:* of successive projections.
- We start with an arbitrary function $\rho^{(0)}(z)$.
- On the k-th iteration, starting with the result $\rho^{(k-1)}(z)$ of the previous iteration, we:
 - find the closest function $\rho'(x)$ to $\rho^{(k-1)}(z)$ which satisfies the 1st condition;
 - then, find the closest function $\rho^{(k)}(x)$ to $\rho'(z)$ which satisfies the 2nd condition.
- We continue this process until it converges.

Need for Data . . . Need to Take... Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 41 of 91 Go Back

Full Screen

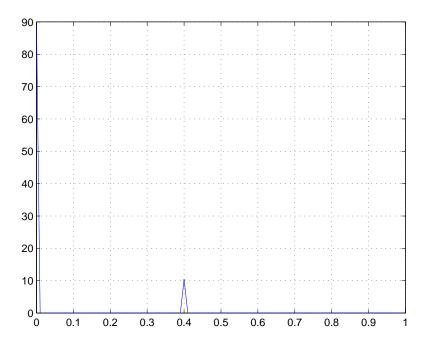
Close

41. Resulting Algorithm

- We start with an arbitrary function $\rho^{(0)}(z)$.
- On the k-th iteration, we start with the function $\rho^{(k-1)}(z)$ obtained on the previous iteration, and we:
 - first, we compute $\rho'(z) = \max(0, \rho^{(k-1)}(z))$;
 - then, we apply Fourier transform to $\rho'(z)$ and get $F'(\omega)$;
 - after that, we compute $F^{(k)}(\omega) = \frac{\sqrt{|D(\omega)|}}{|F'(\omega)|} \cdot F'(\omega);$
 - as the next approx. $\rho^{(k)}(z)$, we take the result of applying the inverse Fourier transform to $F^{(k)}(\omega)$.
- We continue this process until it converges; this enables us to recover many $\rho(x)$.

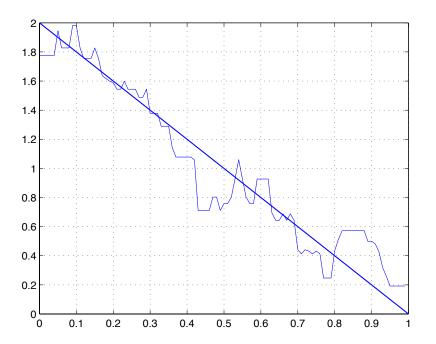
Need for Data . . . Need to Take... Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 42 of 91 Go Back Full Screen Close Quit

42. Example: Reconstructing 2-Peak Distribution



Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 43 of 91 Go Back Full Screen Close Quit

43. Example: Reconstructing Asymmetric Triangular Distribution



Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 44 of 91 Go Back Full Screen Close Quit

44. Summary: Main Problem

- In the ideal world:
 - we should have an *accurate* description of data uncertainty;
 - based on this description, we should use well-justified and efficient algorithms to propagate uncertainty.
- In *practice*, we are often not yet in this ideal situation:
 - the description of uncertainty is often only approximate,
 - the algorithms for uncertainty propagation are often *heuristics*, i.e., not well-justified, and
 - the algorithms for uncertainty propagation are often *not* very computationally *efficient*.

45. Summary: Conclusions

- In Ch. 2, we showed that the traditional idea of random and systematic components is an approximation:
 - we also need *periodic* components;
 - this is important in environmental studies.
- In Chapter 3, on the example of a fuzzy *heuristic*, we showed how a heuristic can be *formally justified*.
- In Ch. 4, we showed how to be more *efficient*; e.g.:
 - first, we process data type-by-type;
 - then, we fuse the resulting models.
- All these results assume that we have a good description of the uncertainty of the original data.
- In practice, we often need to extract this information from the data; this is described in Ch. 5.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 46 of 91 Go Back Full Screen Close Quit

46. Acknowledgments

I would like to express my deep-felt gratitude:

- to my mentor Dr. Vladik Kreinovich;
- to members of my committee, Dr. Aaron Velasco, Dr. Scott Starks, and Dr. Luc Longpré;
- to Dr. Benjamin C. Flores, and to the Alliance for Minority Participation Bridge to the Doctorate program;
- to Dr. Craig Tweedie for his suggestions, comments, and guidance in this work;
- to Dr. Aaron Velasco, Dr. Vanessa Lougheed, Dr. William Robertson, and to all the GK-12 program staff; and
- last but not the least, to all the faculty and staff of the Computational Science Program.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 47 of 91 Go Back Full Screen Close Quit

47. Appendix to Chapter 2: Proof of the Theorem

• Shift-invariance means that, for some $c_i(t_0)$, we have

$$x_i(t+t_0) = c_{i1}(t_0) \cdot x_1(t) + \ldots + c_{in}(t_0) \cdot x_n(t).$$

- For n different values $t = t_1, \ldots, t = t_n$, we get a system of n linear equations with n unknowns $c_{ij}(t_0)$.
- The Cramer's rule solution to linear equations is a smooth function of all the coeff. & right-hand sides.
- Since all the right-hand sides $x_i(t_j+t_0)$ and coefficients $x_i(t_j)$ are smooth, $c_{ij}(t_0)$ are also smooth.
- Differentiating w.r.t. t_0 and taking $t_0 = 0$, for $c_{ij} \stackrel{\text{def}}{=} \dot{c}_{ij}(0)$, we get

$$\dot{x}_i(t) = c_{i1} \cdot x_1(t) + \ldots + c_{in} \cdot x_n(t).$$

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 48 of 91 Go Back Full Screen Close Quit

- Reminder: $\dot{x}_i(t) = c_{i1} \cdot x_1(t) + \ldots + c_{in} \cdot x_n(t)$.
- A general solution of such system of equations is a linear combination of functions

$$t^k \cdot \exp(\lambda \cdot t), \ w/k \in \mathbb{N}, k \ge 0, \lambda = a + i \cdot \omega \in \mathbb{C}.$$

• Here,

$$\exp(\lambda \cdot t) = \exp(a \cdot t) \cdot \cos(\omega \cdot t) + \mathbf{i} \cdot \exp(a \cdot t) \cdot \sin(\omega \cdot t).$$

- When $a \neq 0$, we get unbounded functions for $t \to \infty$ or $t \to -\infty$.
- So, a = 0.
- For k > 0, we get unbounded t^k ; so, k = 0.
- Thus, we indeed have a linear combination of sinusoids.

Need for Data...

Need to Take...

Expert Estimates and . . .

How to Propagate...

How to Propagate...

Chapter 2: Towards...
Chapter 3: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Title Page

Home Page

44 >>

→

Page 49 of 91

Go Back

F. # C

Full Screen

Close

- We are interested in the quantity
- $y = f(x_1(t_{11}), x_1(t_{12}), \dots, x_2(t_{21}), x_2(t_{22}), \dots, x_n(t_{n1}), x_n(t_{n2}), \dots$
 - Instead of the actual values $x_i(t_{ij})$, we only know the measurement results $\widetilde{x}_i(t_{ij}) = x_i(t_{ij}) + \Delta x_i(t_{ij})$.
 - Measurement errors are usually small, so terms quadratic (and higher) in $\Delta x_i(t_{ij})$ can be safely ignored.
 - For example, if the measurement error is 10%, its square is 1% which is much much smaller than 10%.
 - If the measurement error is 1\%, its square is 0.01\% which is much much smaller than 1%.
 - Thus, we can safely linearize the dependence of Δy on $\Delta x_i(t_{ij})$.

Need for Data . . . Need to Take . . .

How to Propagate...

Expert Estimates and . .

How to Propagate...

Chapter 2: Towards...

Chapter 3: Towards... Chapter 4: Towards...

Chapter 5: Towards... Home Page

Title Page

>>

Page 50 of 91

Go Back

Full Screen

Close

• Reminder: we can safely linearize the dependence of Δy on $\Delta x_i(t_{ij})$, so

$$\Delta y = \sum_{i} \sum_{j} C_{ij} \cdot \Delta x_i(t_{ij}), \text{ with } C_{ij} \stackrel{\text{def}}{=} \frac{\partial y}{\partial x_i(t_{ij})}.$$

- In general, $\Delta x_i(t_{ij}) = s_i + r_{ij} + \sum_{\ell} A_{\ell i} \cdot \cos(\omega_{\ell} \cdot t_{ij} + \varphi_{\ell i})$.
- Due to linearity, we have $\Delta y = \Delta y_s + \Delta y_r + \sum_{\ell} \Delta y_{p\ell}$, where

$$\Delta y_s = \sum_{i} \sum_{j} C_{ij} \cdot s_i; \quad \Delta y_r = \sum_{i} \sum_{j} C_{ij} \cdot r_{ij};$$
$$\Delta y_{p\ell} = \sum_{i} \sum_{j} C_{ij} \cdot A_{\ell i} \cdot \cos(\omega_{\ell} \cdot t_{ij} + \varphi_{\ell i}).$$

- We know: how to compute Δy_s and Δy_r .
- What is needed: propagation of the periodic component.

Need for Data...

Need to Take...

Expert Estimates and . . .

How to Propagate...

How to Propagate...

Chapter 2: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Home Page

Title Page

Page 51 of 91

Go Back

Full Screen

Close

51. Propagating Periodic Component: Analysis

• Reminder: for each component, we have

$$\Delta y_{p\ell} = \sum_{i} \sum_{j} C_{ij} \cdot A_{\ell i} \cdot \cos(\omega_{\ell} \cdot t_{ij} + \varphi_{\ell i}).$$

- It is reasonable to assume that different phrases $\varphi_{\ell i}$ are independent (and uniformly distributed).
- Thus, by the Central Limit Theorem, the distribution of $\Delta y_{p\ell}$ is close to normal, with 0 mean.
- The variance of $\Delta y_{p\ell}$ is $\frac{1}{2} \cdot \sum_{i} A_{\ell i}^2 \cdot (K_{ci}^2 + K_{si}^2)$.
- Each amplitude $A_{\ell i}$ can take any value from 0 to the known bound $P_{\ell i}$.
- Thus, the variance is bounded by $\frac{1}{2} \cdot \sum_{i} P_{\ell i}^2 \cdot (K_{ci}^2 + K_{si}^2)$.
- So, we arrive at the following algorithm.

Need to Take...

Need for Data . . .

Expert Estimates and . . .

How to Propagate...

How to Propagate...

Chapter 2: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Home Page
Title Page

4 ►►►

Page 52 of 91

Go Back

Full Screen

Close

52. Propagating Periodic-Induced Component: Algorithm

- First, we apply the algorithm f to the measurement results $\widetilde{x}_i(t_{ij})$ and get the estimate \widetilde{y} .
- Then, we select a small value δ and for each sensor i, we do the following:
 - take $x_i^{(ci)}(t_{ij}) = \widetilde{x}_i(t_{ij}) + \delta \cdot \cos(\omega_\ell \cdot t_{ij})$ for all moments j;
 - for other sensors $i' \neq i$, take $x_{i'}^{(ci)}(t_{i'j}) = \widetilde{x}_i(t_{i'j})$;
 - substitute the resulting values $x_{i'}^{(ci)}(t_{i'j})$ into the data processing algorithm f and get the result $y^{(ci)}$;
 - then, take $x_i^{(si)}(t_{ij}) = \widetilde{x}_i(t_{ij}) + \delta \cdot \sin(\omega_\ell \cdot t_{ij})$ for all moments j;
 - for all other $i' \neq i$, take $x_{i'}^{(si)}(t_{i'j}) = \widetilde{x}_i(t_{i'j})$;
 - substitute the resulting values $x_{i'}^{(si)}(t_{i'j})$ into the data processing algorithm f and get the result $y^{(si)}$.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 53 of 91 Go Back Full Screen Close Quit

53. Algorithm (cont-d)

- Reminder:
 - First, we apply the algorithm f to the measurement results $\widetilde{x}_i(t_{ij})$ and get the estimate \widetilde{y} .
 - Then, for each sensor i, we simulate cosine terms and get the results $y^{(ci)}$.
 - Third, for each sensor i, we simulate sine terms and get the results $y^{(si)}$.
- Finally, we estimate the desired bound $\sigma_{p\ell}$ on the standard deviation of $\Delta y_{p\ell}$ as

$$\sigma_{p\ell} = \sqrt{\frac{1}{2} \cdot \sum_{i} P_{\ell i}^2 \cdot \left(\left(\frac{y^{(ci)} - \widetilde{y}}{\delta} \right)^2 + \left(\frac{y^{(si)} - \widetilde{y}}{\delta} \right)^2 \right)}.$$

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page Page 54 of 91 Go Back Full Screen Close Quit

54. Appendix to Chapter 3

- We know:
 - a fuzzy set $\mu_i(x)$ describing the users' ideal value;
 - the fuzzy set $\mu_a(x)$ describing the users' impression of the actual value.
- For crisp sets, the solution is possibly satisfactory if some of the possibly actual values is also desired.
- In the fuzzy case, we can only talk about the degree to which the proposed solution can be desired.
- A possible decision is satisfactory if either:
 - the actual value is x_1 , and this value is desired,
 - or the actual value is x_2 , and this value is desired,
 - **-** . . .
- Here x_1, x_2, \ldots , go over all possible values of the desired quantity.

55. Derivation of the *d*-Formula (cont-d)

- For each value x_k , we know:
 - the degree $\mu_a(x_k)$ with which this value is actual, and
 - the degree $\mu_i(x_k)$ to which this value is desired.
- Let us use min(a, b) to describe "and" the simplest possible choice of an "and"-operation.
- Then we can estimate the degree to which the value x_k is both actual and desired as

$$\min(\mu_a(x_k),\mu_i(x_k)).$$

- Let us use $\max(a, b)$ to describe "or" the simplest possible choice of an "or"-operation.
- \bullet Then, we can estimate the degree d to which the two fuzzy sets match as

$$d = \max_{x} \min(\mu_a(x), \mu_i(x)).$$

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 56 of 91 Go Back Full Screen Close

Quit

56. Fuzzy Target Approach: How Are Membership Functions Elicited?

- In many applications (e.g., in fuzzy control), the shape of a membership function does not affect the result.
- Thus, it is reasonable to use the simplest possible membership functions symmetric triangular ones.
- To describe a symmetric triangular function, it is sufficient to know the support $[\underline{x}, \overline{x}]$ of this function.
- So, e.g., to get the membership function $\mu_i(x)$ describing the desired situation:
 - we ask the user for all the values a_1, \ldots, a_n which, in their opinion, satisfy the requirement;
 - we then take the smallest of these values as \underline{a} and the largest of these values as \overline{a} ;
 - finally, we form symmetric triangular $\mu_i(x)$ whose support is $[\underline{a}, \overline{a}]$.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 57 of 91 Go Back Full Screen Close Quit

57. Analyzing the Problem

- Reminder: all we elicit from the experts is two intervals:
 - an interval $[\underline{a}, \overline{a}] = [\widetilde{a} \Delta_a, \widetilde{a} + \Delta_a]$ describing the set of all *desired* values, and
 - an interval $[\underline{b}, \overline{b}] = [\widetilde{b} \Delta_b, \widetilde{b} + \Delta_b]$ describing the set of all the values which are *possible*.
- Based on these intervals, we build triangular membership functions $\mu_i(x)$ and $\mu_a(x)$ centered in \tilde{a} and \tilde{b} .
- For these membership functions,

$$d = \max_{x} \min(\mu_a(x), \mu_i(x)) = 1 - \frac{|\widetilde{b} - \widetilde{a}|}{\Delta_a + \Delta_b}.$$

• This is the formula that we need to justify.

58. Our Main Idea

- If we knew the exact values of a and b, then we would conclude a = b, a < b, or b < a.
- \bullet In reality, we know the values a and b with uncertainty.
- \bullet Even if the actual values a and b are the same, we may get approximate values which are different.
- It is reasonable to assume that if the actual values are the same, then Prob(a > b) = Prob(b > a), i.e.,

$$Prob(a > b) = 1/2.$$

- If the probabilities that a > b and that a < b differ, this is an indication that the actual value differ.
- Thus, it's reasonable to use $|\operatorname{Prob}(a > b) \operatorname{Prob}(b > a)|$ as the degree to which a and b may be different.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 59 of 91 Go Back Full Screen Close Quit

59. How To Estimate Prob(a > b) and Prob(b > a)

- If we knew the exact values of a and b, then we could check a > b by comparing $r \stackrel{\text{def}}{=} a b$ with 0.
- ullet In real life, we only know a and b with interval uncertainty, i.e., we only know that

$$a \in [\widetilde{a} - \Delta_a, \widetilde{a} + \Delta_a] \text{ and } b \in [\widetilde{b} - \Delta_b, \widetilde{b} + \Delta_b].$$

• In this case, we only know the range \mathbf{r} of possible values of r = a - b; interval arithmetic leads to

$$\mathbf{r} = [(\widetilde{a} - \widetilde{b}) - (\Delta_a + \Delta_b), (\widetilde{a} - \widetilde{b}) + (\Delta_a + \Delta_b)].$$

- We do not have any reason to assume that some values from **r** are more probable and some are less probable.
- It is thus reasonable to assume that all the values from \mathbf{r} are equally probable, i.e., r is uniformly distributed.
- This argument is widely used in data processing; it is called *Laplace Principle of Indifference*.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 60 of 91 Go Back Full Screen Close Quit

- We estimate Prob(a > b) as Prob(a b > 0).
- We estimate Prob(a < b) as Prob(a b < 0).
- We assumed that r = a b is uniformly distributed on $[(\widetilde{a} \widetilde{b}) (\Delta_a + \Delta_b), (\widetilde{a} \widetilde{b}) + (\Delta_a + \Delta_b)].$
- We can compute $\operatorname{Prob}(a-b>0)$, $\operatorname{Prob}(a-b<0)$, and

$$|\operatorname{Prob}(a > b) - \operatorname{Prob}(b > a)| = \frac{|\widetilde{a} - \widetilde{b}|}{\Delta_a + \Delta_b}.$$

- Since $d = 1 \frac{|\tilde{b} \tilde{a}|}{\Delta_a + \Delta_b}$, we get $d = 1 |\operatorname{Prob}(a > b) \operatorname{Prob}(b > a)|.$
- We have produced a new justification for the d-formula.
- This justification that does not use any simplifying assumptions about memb. f-s and/or "and"-operations.

Need for Data...

Need to Take...

Expert Estimates and . . .

How to Propagate...

How to Propagate...

Chapter 2: Towards...

Chapter 3: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Home Page

Title Page

→

4

Page 61 of 91

Go Back

Full Screen

Close

61. Appendix to Chapter 4: Machine Learning

- In machine learning:
 - we know how to classify several known objects, and
 - we want to learn how to classify new objects.
- For example, in a biomedical application:
 - we have microarray data corresponding to healthy cells and
 - we have microarray data corresponding to different types of tumors.
- Based on these samples, we would like to be able, given a microarray data, to decide
 - whether we are dealing with a healthy tissue or with a tumor, and
 - if it is a tumor, what type of cancer does the patient have.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 62 of 91 Go Back Full Screen Close Quit

62. Machine Learning: A Formal Description

- Each object is characterized by the results $x = (x_1, \ldots, x_n)$ of measuring several (n) different quantities.
- So, in mathematical terms, machine learning can be described as a following problem:
 - we have K possible labels $1, \ldots, K$ describing different classes;
 - we have several vectors $x(j) \in \mathbb{R}^n$, $j = 1, \dots, N$;
 - each vector is labeled by an integer k(j) ranging from 1 to K;
 - vectors labeled as belonging to the k-th class will be also denoted by $x(k, 1), \ldots, x(k, N_k)$;
 - we want to use these vectors to assign, to each new vector $x \in \mathbb{R}^n$, a value $k \in \{1, \dots, K\}$.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 63 of 91 Go Back Full Screen Close

63. Machine Learning: Original Idea

- Often, each class C_k is *convex*: if $x, x' \in C_k$ and $\alpha \in (0, 1)$, then $\alpha \cdot x + (1 \alpha) \cdot x' \in C_k$.
- It all C_k are convex, then we can separate them by using linear separators.
- For example, for K = 2, there exists a linear function $f(x) = c_0 + \sum_{i=1}^n c_i \cdot x_i$ and a threshold value y_0 such that:
 - for all vectors $x \in C_1$, we have $f(x) < y_0$, while
 - for all vectors $x \in C_2$, we have $f(x) > y_0$.
- This can be used to assign a new vector x to an appropriate class: $x \to C_1$ if $f(x) < y_0$, else $x \to C_2$.
- For K > 2, we can use linear functions separating different pairs of classes.

64. Machine Learning: Current Development

- In practice, the classes C_k are often not convex.
- As a result, we need *nonlinear* separating functions.
- The first such separating functions came from simulating (non-linear) biological neurons.
- Even more efficient algorithms originate from the Taylor representation of a separating function:

$$f(x_1, \dots, x_n) = c_0 + \sum_{i=1}^n c_i \cdot x_i + \sum_{i=1}^n \sum_{j=1}^n c_{ij} \cdot x_i \cdot x_j + \dots$$

- This expression becomes linear if we add new variables $x_i \cdot x_j$, etc., to the original variables x_1, \ldots, x_n .
- The corresponding Support Vector Machine (SVM) techniques are the most efficient in machine learning.
- For example, SVM is used to automatically diagnose cancer based on the microarray gene expression data.

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 65 of 91 Go Back Full Screen Close Quit

65. There Is Room for Improvement

- In SVM, we divide the original samples into a training set and a training set.
- We train an SVM method on the training set.
- We test the resulting classification on a testing set.
- Depending on the type of tumor, 90 to 100% correct classifications.
- 90% is impressive, but it still means that up to 10% of all the patients are misclassified.
- How can we improve this classification?

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 66 of 91 Go Back Full Screen Close Quit

66. Our Idea

- Efficient linear algorithms are based on an assumption that all the classes C_k are convex.
- In practice, the classes C_k are often not convex.
- SVM uses (less efficient) general nonlinear techniques.
- Often, while the classes C_k are not exactly convex, they are somewhat convex:
 - for many vectors x and x' from each class C_k and for many values α ,
 - the convex combination $\alpha \cdot x + (1-\alpha) \cdot x'$ still belongs to C_k .
- In this talk, we use fuzzy techniques to formalize this imprecise idea of "somewhat" convexity.
- We show that the resulting machine learning algorithm indeed improves the efficiency.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 67 of 91 Go Back Full Screen Close Quit

67. Need to Use Degrees

- "Somewhat" convexity means that if $x, x' \in C_k$, then $\alpha \cdot x + (1 \alpha) \cdot x' \in C_k$ with some degree of confidence.
- Let $\mu_k(x)$ denote our degree of confidence that $x \in C_k$.
- We arrive at the following fuzzy rule: If $x, x' \in C_k$ and convexity holds, then $\alpha \cdot x + (1 \alpha) \cdot x' \in C_k$.
- If we use product for "and", we get

$$\mu_k(\alpha \cdot x + (1 - \alpha) \cdot x') \ge r \cdot \mu_k(x) \cdot \mu_k(x').$$

- So, if x'' is a convex combination of two sample vectors, then $\mu_k(x'') \ge r \cdot 1 \cdot 1 = r$.
- For combination of three sample vectors, $\mu_k(x'') \ge r^2$.
- For $y = \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j)$, we have $\mu_k(y) \geq r^{\|\alpha\|_0 1}$, where $\|\alpha\|_0$ is the number of non-zero values α_j .

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 68 of 91 Go Back Full Screen Close Quit

68. Using Closeness

- If $y \in C_k$ and x is close to y, then $x \in C_k$ with some degree of confidence.
- In probability theory, Central Limit Theorem leads to Gaussian degree of confidence.
- We this assume that the degree of confidence is described by a Gaussian expression $\exp\left(-\frac{\|x-y\|_2^2}{\sigma^2}\right)$.
- \bullet As a result, for every two vectors x and y, we have

$$\mu_k(x) \ge \mu_k(y) \cdot \exp\left(-\frac{\|x - y\|_2^2}{\sigma^2}\right).$$

69. Combining Both Formulas

• Resulting formula: $\mu_k(x) \geq \widetilde{\mu}_k(x)$, where:

$$\widetilde{\mu}_k(x) \stackrel{\text{def}}{=} \max_{\alpha} \exp\left(-\frac{\left\|x - \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j)\right\|_2^2}{\sigma^2}\right) \cdot r^{\|\alpha\|_0 - 1}.$$

- \bullet To classify a vector x, we:
 - compute $\widetilde{\mu}_k(x)$ for different classes k, and
 - select the class k for which $\widetilde{\mu}_k(x)$ is the largest.
- This is equivalent to minimizing $L_k(x) = -\ln(\widetilde{\mu}_k(x))$:

$$L_k(x) = \mathcal{C} \cdot \left\| x - \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j) \right\|_2^2 + \|\alpha\|_0.$$

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 70 of 91 Go Back Full Screen Close Quit

70. Towards an Efficient Algorithm

- Reminder: we minimize $C \cdot \left\| x \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j) \right\|_2^2 + \|\alpha\|_0$.
- Lagrange multipliers: this is equiv. to minimizing $\|\alpha\|_0$ under the constraint $\left\|x \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j)\right\|_2 \le C$.
- *Problem:* minimizing $\|\alpha\|_0$ is, in general, NP-hard.
- Good news: often, minimizing $\|\alpha\|_0$ is equivalent to minimizing $\|\alpha\|_1 \stackrel{\text{def}}{=} \sum_{i=1}^{N_k} |\alpha_j|$.
- Resulting algorithm: minimize

$$C' \cdot \left\| x - \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j) \right\|_2^2 + \|\alpha\|_1.$$

Need for Data . . . Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 71 of 91 Go Back Full Screen Close Quit

71. Taking the Specific Problem into Account

- For microarray analysis, the actual values of the vector x depend on the efficiency of the microarray technique.
- In other words, with a less efficient technique, we will get $\lambda \cdot x$ for some constant λ .
- From this viewpoint, it is reasonable to use:
 - not just *convex* combinations, but also
 - arbitrary *linear* combinations of the original vectors x(k, j).

72. Towards an Efficient Algorithm (cont-d)

- We repeat ℓ_1 -minimization for each of K classes.
- While ℓ_1 -minimization is efficient, it still takes a large amount of computation time; so:
 - instead of trying to represent the vector x as a linear combination of vectors from each class,
 - let us look for a representation of x as a linear combination of *all* sample vectors, from all classes:

$$C' \cdot \left\| x - \sum_{j=1}^{N} \alpha_j \cdot x(j) \right\|_2^2 + \|\alpha\|_1 \to \min.$$

• Then, for each class k, we only take the components belonging to this class, and select k for which

$$\left\| x - \sum_{j:k(j)=k} \alpha_j \cdot x(j) \right\|_2 \to \min.$$

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 73 of 91 Go Back Full Screen Close Quit

73. Interesting Observation

- This time-saving idea not only increased the efficiency, it also improve the quality of classification.
- We think that this improvement is related to the fact that all the data contain measurement noise.
- On each computation step, we process noisy data.
- Hence, the results get noisier and noisier with each computation step.
- From this viewpoint, the longer computations, the more noise we add.
- By speeding up computation, we thus decrease the noise.
- This compensates a minor loss of optimality, when we replacing K minimizations with a single one.

74. Results

- The probability p of correct identification increased:
 - for brain tumor, p increased from 90% for the best SVM techniques to 91% for our method;
 - for prostate tumor, the probability p similarly increased from 93% to 94%.
- Our method has an additional advantage:
 - to make SVM efficient, we need to select appropriate nonlinear functions;
 - if we select arbitrary functions, we usually get notso-good results;
 - in contrast, our sparse method has only one parameter to tune: the parameter C'.
- Our technique is this less subjective, more reliable and leads to better (or similar) classification results.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 75 of 91 Go Back Full Screen Close Quit

75. Appendix to Chapter 4: Quantum Computing

- Even after all *algorithmic* speed-ups are implemented, the computation time is still often too long.
- In such situations, the only remaining way to speed up computations is to speed up *hardware*.
- Such ideas range from available (e.g., parallelization) to futuristic (e.g., quantum computing).
- Parallelization has been largely well-researched.
- The use of *futuristic* techniques in uncertainty estimation is still largely an open problem.
- In the last section of Ch. 4, we show how quantum computing can be used to speed up computations.

76. Reliability of Interval Data

- Usual assumption: all measuring instruments (MI) functioned correctly.
- Conclusion: the resulting intervals $[\widetilde{x} \Delta, \widetilde{x} + \Delta]$ contain the actual value x.
- In practice: a MI can malfunction, producing way-off values (outliers).
- *Problem:* outliers can ruin data processing.
- Example: average temperature in El Paso
 - based on measurements, $\frac{95 + 100 + 105}{3} = 100$.
 - with outlier, $\frac{95 + 100 + 105 + \mathbf{0}}{4} = 75$.
- \bullet Natural idea: describe the probability p of outliers.
- Solution: out of n results, dismiss $k \stackrel{\text{def}}{=} p \cdot n$ largest values and k smallest.

Need for Data...

Need to Take . . .

Expert Estimates and . . .

How to Propagate...

How to Propagate...

Chapter 3: Towards...

Chapter 3: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Home Page

Title Page

4

Page 77 of 91

Go Back

Full Screen

Close

7. Need to Gauge the Reliability of Interval Data

- *Ideal case*: all measurements of the same quantity are correct.
- Fact: resulting intervals $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ contain the same (actual) value x.
- Conclusion: $\bigcap_{i=1}^{n} \mathbf{x}^{(i)} \neq \emptyset$.
- Reality: we have outliers far from x, so $\bigcap_{i=1}^{n} \mathbf{x}^{(i)} = \emptyset$.
- Expectation: out of n given intervals, $\geq n k$ are correct and hence have a non-empty intersection.
- Conclusion:
 - to check whether our estimate p for reliability is correct,
 - we must check whether out of n given intervals, n-k have a non-empty intersection.

Need for Data...

Need to Take...

Expert Estimates and . . .

How to Propagate...

How to Propagate...

Chapter 2: Towards...
Chapter 3: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Home Page

Title Page

44 >>

4

Page 78 of 91

Go Back

Full Screen

Close

- In practice, a measuring instrument often measure several different quantities x_1, \ldots, x_d .
- Due to uncertainty, after the measurement, for each quantity x_i , we have an interval \mathbf{x}_i of possible values.
- So, the set of all possible values of the tuple $x = (x_1, \ldots, x_d)$ is a box

$$X = \mathbf{x}_1 \times \ldots \times \mathbf{x}_d = \{(x_1, \ldots, x_d) : x_1 \in \mathbf{x}_1, \ldots, x_d \in \mathbf{x}_d\}.$$

- Thus:
 - to check whether our estimate p for reliability is correct,
 - we must be able to check whether out of n given boxes, n-k have a non-empty intersection.

Need for Data...

Need to Take...

Expert Estimates and . . .

How to Propagate...

How to Propagate...

Chapter 2: Towards...
Chapter 3: Towards...

Chapter 4: Towards...

Chapter 5: Towards...

Home Page

Title Page

← →

←

Page 79 of 91

Go Back

Full Screen

Close

Thus, both in the interval and in the fuzzy cases, we need to solve the following computational problem:

- Given:
 - \bullet integers d, n, and k; and
 - *n d*-dimensional boxes

$$X^{(j)} = [\underline{x}_1^{(j)}, \overline{x}_1^{(j)}] \times \ldots \times [\underline{x}_n^{(j)}, \overline{x}_n^{(j)}],$$

 $j = 1, \ldots, n$, with rational bounds $\underline{x}_i^{(j)}$ and $\overline{x}_i^{(j)}$.

- *Check* whether
 - we can select n-k of these n boxes
 - in such a way that the selected boxes have a nonempty intersection.

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 80 of 91 Go Back Full Screen Close

Quit

80. Results

- First result: in general, the above computational problem is NP-hard.
- *Meaning:* no algorithm is possible that solves all particular cases of this problem in reasonable time.
- In practice: the number of d of quantities measured by a sensor is small: e.g.,
 - a GPS sensor measures 3 spatial coordinates;
 - a weather sensor measures (at most) 5:
 - * temperature,
 - * atmospheric pressure, and
 - * the 3 dimensions of the wind vector.
- Second result: for a fixed dimension d, we can solve the above problem in polynomial time $O(n^d)$.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 81 of 91 Go Back Full Screen Close Quit

81. Algorithm: Description and Need for Speed Up

- Lemma: if a set of boxes has a common point, then there is another common vector whose all components are endpoints.
- *Proof:* move to an endpoint in each direction.
- Number of endpoints: n intervals have $\leq 2n$ endpoints.
- Bounds on computation time: we have $\leq (2n)^d$ combinations of endpoints, i.e., polynomial time.
- Remaining problem: n^d is too slow;
 - for n = 100 and d = 5, we need 10^{10} computational steps very long but doable;
 - for $n = 10^4$ and d = 5, we need 10^{20} computational steps which is unrealistic.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 82 of 91 Go Back Full Screen Close Quit

82. Use of Quantum Computing

- *Idea:* use Grover's algorithm for quantum search.
- Problem: search for a desired element in an unsorted list of size N.
- Without using quantum effects: we need in the worst case at least N computational steps.
- A quantum computing algorithm can find this element much faster in $O(\sqrt{N})$ time.
- Our case: we must search $N = O(n^d)$ endpoint vectors.
- Quantum speedup: we need time $\sqrt{N} = O(n^{d/2})$.
- Example: for of $n = 10^4$ and d = 5,
 - the non-quantum algorithm requires a currently impossible amount of 10^{20} computational steps,
 - while the quantum algorithm requires only a reasonable amount of 10^{10} steps.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 83 of 91 Go Back Full Screen Close Quit

83. Quantum Computing: Conclusion

- In traditional interval computations, we assume that
 - the interval data corresponds to guaranteed interval bounds, and
 - that fuzzy estimates provided by experts are correct.
- In practice, measuring instruments are not 100% reliable, and experts are not 100% reliable.
- We may have estimates which are "way off", intervals which do not contain the actual values at all.
- Usually, we know the percentage of such outlier unreliable measurements.
- It is desirable to check that the reliability of the actual data is indeed within the given percentage.

84. Quantum Computing: Conclusions (cont-d)

In this section, we have shown that:

- in general, the problem of checking (gauging) this reliability is computationally intractable (NP-hard);
- in the reasonable case
 - when each sensor measures a small number of different quantities,
 - it is possible to solve this problem in polynomial time;
- quantum computations can drastically reduce the required computation time.

85. Appendix to Chapter 5: Fourier Analysis

- We want to find is the probability density $\rho(z)$ describing the distribution of the measurement error $z \stackrel{\text{def}}{=} \Delta x$.
- In order to find the unknown probability density, we will first find its Fourier transform

$$F(\omega) = \int \rho(z) \cdot e^{i \cdot \omega \cdot z} dz = E \left[e^{i \cdot \omega \cdot z} \right].$$

- Such a mathematical expectation is also known as a *characteristic function* of the random variable z.
- Based on the observed values of the difference $z^{(1)}-z^{(2)}$, we can estimate its characteristic function

$$D(\omega) = E\left[e^{i\cdot\omega\cdot(z^{(1)}-z^{(2)})}\right].$$

- It is known that $D(\omega) = F(\omega) \cdot F^*(\omega) = |F(\omega)|^2$.
- How can we reconstruct the complex-valued function $F(\omega)$ if we only know its absolute value?

Need to Take . . . Expert Estimates and . . How to Propagate... How to Propagate... Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 86 of 91 Go Back Full Screen Close Quit

- Theoretically, we can consider all possible values of the difference $z^{(1)} z^{(2)}$.
- In practice, we can only get values proportional to the smallest measuring unit h (e.g., h = 1 cm).
- In the 1-D case, the Fourier transform takes the form $F(\omega) = \sum_{k=0}^{N} p_k \cdot s^k$, where $s \stackrel{\text{def}}{=} e^{\mathbf{i} \cdot \omega \cdot h}$.
- In the multi-D case, we have $z = (k_1 \cdot h_1, k_2 \cdot h_2, \ldots)$, and $F(\omega) = \sum_{k_1=0}^{N_1} \sum_{k_2=0}^{N_2} \ldots p_{k_1,k_2,\ldots} \cdot s_1^{k_1} \cdot s_2^{k_2} \cdot \ldots$
- In terms of polynomials, the question takes the following form:
 - we know the values $D(s) = |P(s)|^2 = P(s) \cdot P^*(s)$ for some polynomial P(s),
 - we need to reconstruct this polynomial P(s).

Need for Data...

Need to Take...

Expert Estimates and...

How to Propagate...

How to Propagate...

Chapter 2: Towards...

Chapter 3: Towards...

Chapter 4: Towards...

Home Page

Chapter 5: Towards...

Title Page

Page 87 of 91

Go Back

Full Screen

Close

87. Is It Possible to Estimate Accuracy (cont-d)

- In 1-D case, each complex-valued polynomial of degree N has, in general, N complex roots $s^{(1)}$, $s^{(2)}$, etc.
- Thus, $P(s) = \text{const} \cdot (s s^{(1)}) \cdot (s s^{(2)}) \cdot \dots$ and $|P(s)|^2 = \text{const} \cdot (s s^{(1)}) \cdot (s s^{(1)})^* \cdot \dots$
- There are many factors, so there are many ways to represent it as a product reconstruction is not unique.
- In the multi-D case, a generic polynomial *cannot* be represented as a product of polynomials.
- E.g., to describe a polynomial $\sum_{k=0}^{n} \sum_{l=1}^{n} c_{kl} \cdot s_1^k \cdot s_2^l$ of degree n, we need $(n+1)^2$ coefficients.
- When polyn. multiply, degrees add: $s^m \cdot s^{m'} = s^{m+m'}$.
- Thus, if P(s) is a product of two polynomials, one has a degree m < n, and the other degree n m.

Need to Take . . . Expert Estimates and . . How to Propagate . . . How to Propagate . . . Chapter 2: Towards... Chapter 3: Towards... Chapter 4: Towards... Chapter 5: Towards... Home Page Title Page **>>** Page 88 of 91 Go Back Full Screen Close Quit

88. Proof (cont-d)

- If P(s) is a product of two polynomials, one has a degree m < n, and the other degree n m.
- In general:
 - we need $(m+1)^2$ coefficients to describe a polynomial of degree m and
 - we need $(n-m+1)^2$ coefficients to describe a polynomial of degree n-m,
 - so to describe arbitrary products of such polynomials, we need $(m+1)^2 + (n-m+1)^2$ coefficients.
- In general, the total number of coefficients is smaller than $(n+1)^2$.
- So, a general polynomial cannot be represented as a product of two polynomials.

89. Conclusion

- We have shown that a general polynomial cannot be represented as a product of two polynomials.
- Thus, $D(s) = P(s) \cdot P^*(s) = Q(s) \cdot Q^*(s)$ implies that Q(s) = P(s) or $Q(s) = P^*(s)$.
- In the first case, we get $\rho(x)$.
- In the second case, we get $\rho(-x)$.
- So, in general, only $\rho(x)$ and $\rho(-x)$ are consistent with the observed differences $\Delta x^{(1)} \Delta x^{(2)}$.
- Thus, we can reconstruct the distribution $\rho(x)$ of measurement errors modulo $x \to -x$.

90. Practical Question: How to Gauge the Accuracy

- Problem: find a function $\rho(z)$ which satisfies the following two conditions:
 - $\rho(z) \geq 0$ for all z, and
 - $|F(\omega)|^2 = D(\omega)$ for given $D(\omega)$.
- *Method:* of successive projections.
- We start with an arbitrary function $\rho^{(0)}(z)$.
- On the k-th iteration, starting with the result $\rho^{(k-1)}(z)$ of the previous iteration, we:
 - find the closest function $\rho'(x)$ to $\rho^{(k-1)}(z)$ which satisfies the 1st condition;
 - then, find the closest function $\rho^{(k)}(x)$ to $\rho'(z)$ which satisfies the 2nd condition.
- We continue this process until it converges.

Need for Data...
Need to Take...
Expert Estimates and...
How to Propagate...
Chapter 2: Towards...
Chapter 3: Towards...
Chapter 4: Towards...
Chapter 5: Towards...
Home Page
Title Page

4 →

Page 91 of 91

Go Back

Full Screen

Close