How the Amount of Cracks and Potholes Grows with Time: Symmetry-Based Explanation of Empirical Dependencies

Edgar Daniel Rodriguez Velasquez^{1,2},
Olga Kosheleva³, and Vladik Kreinovich⁴

¹Universidad de Piura in Peru (UDEP), edgar.rodriguez@udep.pe
Departments of ²Civil Engineering, ³Teacher Education,
and ⁴Computer Science
University of Texas at El Paso, El Paso, Texas 79968, USA,
edrodriguezvelasquez@miners.utep.edu
olgak@utep.edu, vladik@utep.edu

Cracks and Potholes Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible ... First Idea So What Do We Do? Home Page **>>** Page 1 of 28 Go Back Full Screen Close Quit

- When a road is built, it is almost perfect it has only miniature cracks and potholes.
- However, as the road is used, cracks and potholes appear and start growing.
- The amount of cracks is gauged the overall length C of longitudal cracks outside the wheel path.
- ullet The amount of potholes is usually gauged by the total area P of potholes.
- As the road is used, the quality of the pavement deteriorates, and the values C and P grow.
- This growth starts at some small values corresponding to the newly built road age t=0.

2. Cracks and Potholes (cont-d)

- It continues growing until they reach the maximum the undesirable bad state.
- In this state, the whole road is covered by cracks and potholes.
- The empirical formulas for this growth are:

$$C = a_C \cdot \exp(-b_C \cdot \exp(-c_C \cdot t)); \quad P = a_P \cdot \exp(-b_P \cdot \exp(-c_P \cdot t)).$$

• In this talk, we use natural symmetry ideas to provide a theoretical explanation for these empirical formulas. Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 3 of 28 Go Back Full Screen Close Quit

3. Natural Transformations

- In science and engineering, we are interested in the values of different physical quantities.
- We describe these quantities in numerical form.
- However, the numerical values of the corresponding quantities depend on the measuring unit.
- For some quantities such as temperature or time, the values also depend on the starting point.
- If we change the measuring unit for length from meters to centimeters, then all numerical values are \times by 100.
- For example, 2 m becomes $2 \cdot 100 = 200$ cm.

4. Natural Transformations (cont-d)

- In general:
 - if we replace the original measuring unit with a new unit which is λ times smaller,
 - all numerical values are multiplied by λ :

$$x \to X = \lambda \cdot x$$
.

- This numerical transformation is known as *scaling*.
- Similarly, we can start measuring time:
 - not from our year 0,
 - but as the French Revolution suggested with the year 1789 when the revolution started.
- Then from all year values, we should subtract 1789.

Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 5 of 28 Go Back Full Screen Close Quit

5. Natural Transformations (cont-d)

- In general:
 - if we replace the original starting point with the one which is x_0 units before,
 - then we add x_0 to all numerical values:

$$x \to X = x + x_0$$
.

• This numerical transformation is known as *shift*.

6. Natural Symmetries

- For most physical quantities, there is no fixed measuring unit and sometimes no fixed starting point.
- It is therefore reasonable to require that:
 - the dependencies y = f(x) between physical quantities
 - also not depend on the choice of the measuring unit
 - (and possibly on the choice of the starting point).
- In physics, such invariance is called *symmetry*.

7. Natural Symmetries (cont-d)

- Of course:
 - if we just change the unit and/or starting point for x,
 - to keep the same formula true in the new units, we may need to appropriately change y.
- For example, to preserve the formula $d = v \cdot t$ that the path is the product of speed and time:
 - when we change the unit for time,
 - we need to appropriately change the unit for speed.
- With this is mind, let us describe possible invariant dependencies.

3. Scaling-to-Scaling (sc-sc)

- Let us first consider the case when the dependence remains the same after we apply scaling to x and y.
- In precise terms, we assume that for every $\lambda > 0$, there exists a value $\mu(\lambda)$ (depending on λ) such that:
 - if y = f(x),
 - then Y = f(X), where $X = \lambda \cdot x$ and $Y = \mu(\lambda) \cdot y$.
- If we plug in the expressions for Y in terms of y and X in terms of x into Y = f(X), we get $f(\lambda \cdot x) = \mu(\lambda) \cdot y$.
- Here, y = f(x), so $f(\lambda \cdot x) = \mu(\lambda) \cdot f(x)$.
- It is known that every measurable dependence f(x) with this property has the form $f(x) = A \cdot x^a$.

9. Comment

- The general proof is somewhat complicated.
- However, most physical dependencies are differentiable.
- For differentiable f(x), this is easy to prove.
- Indeed, if f(x) is differentiable, then the function $\mu(\lambda) = \frac{f(\lambda \cdot x)}{f(x)}$ is differentiable too.
- Thus, we can differentiate both sides of the equation $f(\lambda \cdot x) = \mu(\lambda) \cdot f(x)$ with respect to λ .
- As a result, we get $x \cdot f'(\lambda \cdot x) = \mu'(\lambda) \cdot f(x)$.
- In particular, for $\lambda = 1$, we get $x \cdot \frac{df}{dx} = a \cdot f$, where

$$a \stackrel{\text{def}}{=} \mu'(1).$$

10. Comment (cont-d)

- We can separate x and f if we multiply both sides of the equality by $\frac{dx}{x \cdot f} : \frac{df}{f} = a \cdot \frac{dx}{x}$.
- Integrating both sides, we get $\ln(f) = a \cdot \ln(x) + C$, where C is the integration constant.
- Applying the function $\exp(z)$ of both sides, we get the desired expression $f(x) = A \cdot x^a$, with $A = \exp(C)$.

Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 11 of 28 Go Back Full Screen Close Quit

Shift-to-Scaling (sh-sc) 11.

- Let us consider the case when the dependence remains the same after we apply shift to x and scaling to y.
- In this case, for every x_0 , there exists a value $\mu(x_0)$ (depending on x_0) such that:
 - if y = f(x),
 - then we have Y = f(X), where $X = x + x_0$ and

$$Y = \mu(x_0) \cdot y.$$

• If we plug in the expressions for Y in terms of y and X in terms of x into Y = f(X), we get

$$f(x+x_0) = \mu(x_0) \cdot y.$$

- Here, y = f(x), so $f(x + x_0) = \mu(x_0) \cdot f(x)$.
- It is known that every measurable dependence f(x)with this property has the form $f(x) = A \cdot \exp(a \cdot x)$.

Cracks and Potholes Natural Symmetries

Scaling-to-Scaling (sc-sc)

Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh)

What Are Possible . . .

First Idea

So What Do We Do?

Title Page

Home Page

44 **>>**

Page 12 of 28

Go Back

Full Screen

Close

12. Comment

- If f(x) is differentiable, then the function $\mu(x_0) = \frac{f(x+x_0)}{f(x)}$ is differentiable too.
- Thus, we can differentiate both sides of the equation $f(x + x_0) = \mu(x_0) \cdot f(x)$ with respect to x_0 .
- As a result, we get $f'(x + x_0) = \mu'(x_0) \cdot f(x)$.
- For $x_0 = 0$, we get $\frac{df}{dx} = a \cdot f$, where $a \stackrel{\text{def}}{=} \mu'(0)$.
- We can separate the variables x and f if we multiply both sides of the equality by $\frac{dx}{f} : \frac{df}{f} = a \cdot dx$.
- Integrating both sides, we get $\ln(f) = a \cdot x + C$, where C is the integration constant.
- Applying the function $\exp(z)$ to both sides, we get $f(x) = A \cdot \exp(a \cdot x)$, with $A = \exp(C)$.

Cracks and Potholes

Natural Symmetries

Scaling-to-Scaling (sc-sc)
Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh)
Shift-to-Shift (sh-sh)

What Are Possible . . .
First Idea

So What Do We Do?

Home Page

Title Page

Page 13 of 28

Go Back

Full Screen

Close

13. Scaling-to-Shift (sc-sh)

- Let us now consider the case when the dependence remains the same after we scale x and shift y.
- In precise terms, we assume that for every $\lambda > 0$, there exists a value $y_0(\lambda)$ (depending on λ) such that:
 - if y = f(x),
 - then Y = f(X), where $X = \lambda \cdot x$ and $Y = y + y_0(\lambda)$.
- If we plug in the expressions for Y in terms of y and X in terms of x Y = f(X), we get $f(\lambda \cdot x) = y + y_0(\lambda)$.
- Here, y = f(x), so $f(\lambda \cdot x) = f(x) + y_0(\lambda)$.
- It is known that every measurable dependence f(x) with this property has the form $f(x) = a \cdot \ln(x) + C$.

Cracks and Potholes Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 14 of 28 Go Back Full Screen Close Quit

14. Comment

- If f(x) is differentiable, then the function $y_0(\lambda) = f(\lambda \cdot x) f(x)$ is differentiable too.
- Thus, we can differentiate both sides of the equation $f(\lambda \cdot x) = f(x) + y_0(\lambda)$ with respect to λ .
- As a result, we get $x \cdot f'(\lambda \cdot x) = y'_0(\lambda)$.
- In particular, for $\lambda = 1$, we get $x \cdot \frac{df}{dx} = a$, where

$$a \stackrel{\text{def}}{=} y_0'(1).$$

- We can separate the variables x and f if we multiply both sides of the equality by $\frac{dx}{x}$: $df = a \cdot \frac{dx}{x}$.
- Integrating both sides, we get $f(x) = a \cdot \ln(x) + C$, where C is the integration constant.

Cracks and Potholes

Natural Symmetries

Scaling-to-Scaling (sc-sc)

Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh)
Shift-to-Shift (sh-sh)

What Are Possible...

First Idea

So What Do We Do?

Home Page

Title Page

Page 15 of 28

Go Back

Full Screen

Close

Shift-to-Shift (sh-sh) **15.**

- In this case, for every x_0 , there exists a value $y_0(x_0)$ such that:
 - if y = f(x),
 - then we have Y = f(X), where $X = x + x_0$ and

$$Y = y + y_0(x_0).$$

• If we plug in the expressions for Y in terms of y and X in terms of x into Y = f(X), we get

$$f(x + x_0) = y + y_0(x_0).$$

- Here, y = f(x), so $f(x + x_0) = f(x) + y_0(x_0)$.
- It is known that every measurable dependence f(x)with this property has the form $f(x) = a \cdot x + C$.

Natural Symmetries

Cracks and Potholes

Scaling-to-Scaling (sc-sc)

Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh)

What Are Possible . . .

First Idea

Home Page Title Page

So What Do We Do?

>>

Page 16 of 28

Go Back

Full Screen

Close

16. Comment

- If f(x) is differentiable, then the function $y_0(x_0) = f(x+x_0) f(x)$ is differentiable too.
- Thus, we can differentiate both sides of the equation $f(x + x_0) = f(x) + y_0(x_0)$ with respect to x_0 .
- As a result, we get $f'(x + x_0) = y'_0(x_0)$.
- In particular, for $x_0 = 0$, we get f'(x) = a, where

$$a \stackrel{\text{def}}{=} y_0'(0).$$

• Integrating, we get $f(x) = a \cdot x + C$, where C is the integration constant.

17. What We Want: A Brief Reminder

- We want to find the dependence of the quantity q (crack or pothole amount) on time t; we know:
 - that the for t = 0, the value q(t) is small positive,
 - that the value q(t) increases with time, and
 - that the value q(t) tends to some large constant value when t increases.

Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 18 of 28 Go Back Full Screen Close Quit

18. What Are Possible Symmetries Here?

- For crack amount C and for pothole amount P, there is an absolute starting point: 0.
- Then, we have no cracks and no potholes.
- However, it makes sense to use different units of length and different units of area.
- So scaling makes perfect sense.
- For time, as we have mentioned, both shift and scaling make sense.

Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 19 of 28 Go Back Full Screen Close Quit

19. First Idea

- Let us see if any of the above symmetric dependencies satisfy the desired property.
- Since for q, only scaling makes sense, we can only consider two possibilities: sc-sc and sh-sc.
- Let us consider them one by one.
- In the sc-sc case, we have $q(t) = A \cdot t^a$.
- Since we want a non-negative value, we have A > 0.
- Since we want q(t) to be increasing with time, we have to take a > 0.
- However, in this case:
 - -q(0) is zero while we want it to be positive, and
 - -q(t) tends to infinity as t increases while we want it to tend to some constant.

Cracks and Potholes

Natural Symmetries

Scaling-to-Scaling (sc-sc)

Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh)
Shift-to-Shift (sh-sh)

What Are Possible . . .
First Idea

So What Do We Do?

Home Page

Title Page

Page 20 of 28

Go Back

Full Screen

Close

20. First Idea: sh-sc Case

- In the sh-sc case, we have $q(t) = A \cdot \exp(a \cdot t)$.
- Again, since we want a non-negative value, we have to take A > 0.
- Since we want q(t) to be increasing with time, we have to take a > 0; in this case:
 - -q(0) is positive, which is exactly what we wanted,
 - however, q(t) tends to infinity as t increases while we want it to tend to some constant.

Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 21 of 28 Go Back Full Screen Close Quit

21. So What Do We Do?

- The first idea does not work, so what should we do?
- The above arguments about possible dependencies deal with the case when y directly depend on time t.
- However, in our case, cracks and potholes do not directly depend on time.
- What changes with time is stress, which, in its turn, causes the pavement to crack.
- In other words, instead of the direct dependence of the quantity q on time:
 - we have q depending on some auxiliary quantity z, and
 - we have z depending on time t.

Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 22 of 28 Go Back Full Screen Close Quit

So What Do We Do (cont-d)

- For both dependencies q(z) and z(t) we can have symmetrymotivated formulas.
- Let us see which combinations of these formulas provide the desired properties of q(t) = q(z(t)):
 - that this value is positive for t=0,
 - that this value increases for t > 0, and
 - that this value tends to a finite limit when $t \to \infty$.

Natural Symmetries

Cracks and Potholes

Scaling-to-Scaling (sc-sc)

Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh)

What Are Possible . . .

First Idea

So What Do We Do?

Home Page

>>

Title Page

Page 23 of 28

Go Back

Full Screen

Close

23. Possible Options of the q(z) Dependence

- For q, only scaling is possible.
- \bullet So, for possible dependencies q(z), we have:
 - either the sc-sc option $q(z) = A \cdot z^a$
 - or the sh-sc option $q(z) = A \cdot \exp(a \cdot z)$.
- In the sc-sc option $q(z) = A \cdot z^a$, it does not make sense to consider sh-sc or sc-sc options for z(t); indeed:
 - as one can check, this will be equivalent to sh-sc or sc-sc symmetry for q(t),
 - and we have already shown that this is not possible.
- So, to go beyond previously considered options, we need to consider two remaining options for z(t):
 - sh-sh option $z(t) = a_1 \cdot t + C_1$, and
 - sc-sh option $z(t) = a_1 \cdot \ln(t) + C_1$.

Cracks and Potholes

Natural Symmetries

Scaling-to-Scaling (sc-sc)

Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh)
Shift-to-Shift (sh-sh)

What Are Possible...

First Idea

So What Do We Do?

Home Page
Title Page

() »

4

Page 24 of 28

Go Back

Full Screen

Close

24. Possible Options (cont-d)

- In the 1st case, $q(t) = A \cdot z^a = A \cdot (a_1 \cdot t + C_1)^a$, i.e., $q(t) = A_1 \cdot (t + c_2)^a$, where $A_1 = A \cdot (a_1)^a$ and $c_2 = \frac{C_1}{a_1}$.
- The need to have positive values of q implies A > 0, the need to have q(t) increasing leads to a > 0.
- However then, for $t \to \infty$, the resulting expression tends to infinity while we want it bounded.
- In the 2nd case, $q(t) = A \cdot (a_1 \cdot \ln(t) + C_1)^a$, i.e., $q(t) = A_1 \cdot (\ln(t) + c_2)^a$, with $A_1 = A \cdot (a_1)^a$ and $c_2 = \frac{C_1}{a_1}$.
- The need to have positive values of q implies A > 0, the need to have q(t) increasing leads to a > 0.
- However then, for $t \to \infty$, the resulting expression also tends to infinity while we want it bounded.

Natural Symmetries Scaling-to-Scaling (sc-sc) Shift-to-Scaling (sh-sc) Scaling-to-Shift (sc-sh) Shift-to-Shift (sh-sh) What Are Possible . . . First Idea So What Do We Do? Home Page Title Page **>>** Page 25 of 28 Go Back Full Screen Close Quit

25. sh-sc Option $q(z) = A \cdot \exp(a \cdot z)$

- In this option, it does not make sense to consider sh-sh or sc-sh options for z(t); indeed:
 - as one can check, this will be equivalent to sh-sc or sc-sc symmetry for q(t),
 - and we have already shown that this is not possible.
- So, to go beyond previously considered options, we need to consider two remaining options for z(t):
 - sc-sc option $z(t) = A_1 \cdot t^{a_1}$, and
 - sh-sc option $z(t) = A_1 \cdot \exp(a_1 \cdot t)$.
- In the 1st case, $q(t) = A \cdot \exp(a \cdot z) = A \cdot \exp((a \cdot A_1) \cdot t^{a_1})$.
- The need to have positive values of q implies A > 0.
- The behavior of this expression depends on the sign of the product $a \cdot A_1$.

Cracks and Potholes

Natural Symmetries

Scaling-to-Scaling (sc-sc)
Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh)
Shift-to-Shift (sh-sh)

What Are Possible...

First Idea

So What Do We Do?

Home Page

Title Page

Go Back

Full Screen

Full Screen

Close

- If $a \cdot A_1 > 0$, then the need to have q(t) increasing leads to $a_1 > 0$.
- However then, for $t \to \infty$, the resulting expression tends to infinity and we want it bounded.
- If $a \cdot A_1 < 0$, then the need to have q(t) increasing leads to $a_1 < 0$.
- However then, for $t \to 0$, we have $t^{-|a_1|} \to \infty$, hence $(a \cdot A_1) \cdot t^{-|a_1|} \to -\infty$, and $q(t) = A \cdot \exp((a \cdot A_1) \cdot t^{-|a_1|}) \to 0$, but we want the value q(0) to be positive.
- So, the only possible case is the second case, when $q(t) = A \cdot \exp(a \cdot z) = A \cdot ((a \cdot A_1) \cdot \exp(a_1 \cdot t)).$
- This is exactly the desired formulas.
- Thus, we have indeed justified the empirical dependencies.

Cracks and Potholes

Natural Symmetries

Scaling-to-Scaling (sc-sc)

Shift-to-Scaling (sh-sc)

Scaling-to-Shift (sc-sh)

Shift-to-Shift (sh-sh)

What Are Possible...

First Idea

So What Do We Do?

Home Page

Title Page

Page 27 of 28

Go Back

Full Screen

Close

27. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1834620 (CAHSI Includes), and
- HRD-1242122 (Cyber-ShARE Center of Excellence).

