How to Represent Uncertainty via Qudits: Probability Distributions, Regular, Intuitionistic, and Picture Fuzzy Sets, F-Transforms, etc.

Olga Kosheleva1 and Vladik Kreinovich2

Departments of 1Teacher Education and 2Computer Science
University of Texas at El Paso, El Paso, Texas 79968, USA
olgak@utep.edu, vladik@utep.edu
1. Outline

- The need for faster computations necessitates the need to make computer components smaller and smaller.
- The smaller we make them, the more important is to take quantum effects into account.
- From this viewpoint, quantum computing – computing on devices for which we need to take quantum effects into account – is inevitable.
- Traditional quantum computing techniques are based on qubits – quantum analogues of 2-state components (bits).
- However, lately, it has been shown that it is often beneficial to use quantum analogues of \(d\)-state components for \(d > 2\).
- Such analogues are known as qudits.
2. Outline (cont-d)

- Input to computations comes from measurements and expert estimates.

- In both cases, the values we submit to algorithms are known with uncertainty.

- In this talk, we analyze how different types of uncertainty can be represented in the qudit form.
3. We need faster computers

- Modern computers are very fast.
- However, there are still many practical problem for which their computation speed is not enough.
- An example of such a problem is tornado prediction.
- We can reasonably accurately predict tomorrow’s weather – by spending several hours on a high-performance computer.
- We can also predict, by spending the same computation time, in what direction a tornado will turn in the next 15 minutes.
- For predicting weather, several hours of computing still result in a prediction being ahead of the actual event.
- However, for tornados, this computation time makes no sense: by the time we have our predictions, the tornado will already have turned.
- To solve such problems, we need faster computations.
4. To make computers faster, we need to make their components smaller

- The speed of current computers is limited – somewhat surprisingly – by fundamental physics.
- Namely, by the fact that, according to physics, no process can be faster than the speed of light 300 000 km/sec.
- The size of a usual laptop is approximately 30 cm size.
- The fastest way to send a signal from one of its sides to another one can be obtained if we divide 30 cm by the speed of light.
- As a result, we get one nanosecond – 10^{-9} of a second.
- During this time, a usual 4GHz computer – that performs 4 operations per nanosecond – will already perform 4 operations.
- From this viewpoint, the only way to drastically speed up computations is to drastically shrink the computer.
- Thus, we need to drastically shrink all its components.
5. Enter quantum effects

- The current computer cells are already almost the size of a few thousands of molecules.

- So if we drastically shrink them, their size will be comparable to a molecule size.

- To describe objects at such micro-size, it is no longer sufficient to use the usual Newton’s mechanics.

- It is necessary to take into account effects of quantum physics – the physics of micro-world.

- This is exactly what is called quantum computing.

- It is computing with devices whose performance cannot be described without taking quantum effects into account.
6. Quantum computing: from necessary evil to spectacular (and scary) promises

- At first, computer engineers viewed these quantum effects purely negatively.
- For example, in quantum physics, results can only be predicted with some probabilities.
- This is a big problem when we want to design a computer that returns the same (correct) answer every time.
- However, later, scientists learned how to “tame” these probabilities and come up with deterministic devices.
- Moreover, it turns out that in many cases, quantum effects the specific can speed up computations.
- E.g., quantum computing can find, in an unsorted n-element list, an element with a desired property in time proportional to \sqrt{n}.
7. Quantum computing: from necessary evil to spectacular (and scary) promises (cont-d)

- In non-quantum case, we cannot do it faster than in \(n \) computational steps.

- Indeed, if we do not check all \(n \) elements, we may miss the desired element.

- An even more drastic speedup is attained for the problem of representing a given integer as a product of prime numbers.

- For non-quantum computing the only available algorithms require computation time that grows exponentially with the number’s length.

- Thus, for 100-digit numbers this time becomes larger than the lifetime of the Universe.

- With quantum computing, we can do it in feasible time.
8. Quantum computing: from necessary evil to spectacular (and scary) promises (cont-d)

• This example is very important, because:
 – all modern computer encryption algorithms – that make our communications private
 – are based on the difficulty of finding prime factors.

• So, when quantum computers will appear, all our supposedly secret messages will be available to everyone.
A specific feature of quantum physics is that:

- for every set of classical states \(s, \ldots, s' \) – which in quantum physics are denoted as \(|s\rangle, \ldots, |s'\rangle\)
- we can have superpositions of these states, i.e., states of the form
 \[c_s |s\rangle + \ldots + c_{s'} |s'\rangle. \]

Here \(c_s, \ldots, c_{s'} \) are complex numbers for which \(|c_s|^2 + \ldots + |c_{s'}|^2 = 1 \).
10. Independent systems in quantum physics

- Suppose that we have two independent objects:
 - the first one with classical states \(s, \ldots, s' \), and
 - the second one with the states \(t, \ldots, t' \).

- Suppose that the first object is in the state \(c_s |s\rangle + \ldots + c_{s'} |s'\rangle \).

- Suppose that the second object is in the state \(c'_t |t\rangle + \ldots + c'_{t'} |t'\rangle \).

- Then the system composed of these two objects is in the state
 \[
 c_s \cdot c'_t |s', t\rangle + \ldots + c_s \cdot c'_{t'} |s, t'\rangle + \ldots + c_{s'} \cdot c'_t |s, t\rangle + \ldots + c_{s'} \cdot c'_{t'} |s', t'\rangle.
 \]

- This joint state is called a tensor product of the states of these two systems.
11. Measurements in quantum physics

- In general, if in the superposition state $c_s|s\rangle + \ldots + c_{s'}|s'\rangle$, we measure the state of the system:
 - we will get $|s\rangle$ with probability $|c_s|^2$, \ldots, and
 - we will get $|s'\rangle$ with probability $|c_{s'}|^2$.

- The fact that we always get exactly one of these possible results implies that the sum of these probabilities should be equal to 1.

- This explains the above condition on the coefficients $c_s, \ldots, c_{s'}$.
12. Enter qubits

- Most computers are based on the binary system.
- Its components are 2-state components corresponding to binary (0 or 1) digits known as bits.
- So naturally, most current quantum computing schemes are based on using quantum analogues of bits, known as qubits.
- In particular, since a bit has two states 0 and 1, a general state of a qubit is the state
 \[c_0|0\rangle + c_1|1\rangle. \]
- Here \(c_0\) and \(c_1\) are complex numbers for which
 \[|c_0|^2 + |c_1|^2 = 1. \]
13. Traditional approach to implementing qubits

- Because of the emphasis on qubits, to implement quantum computing, researchers:
 - find quantum systems that can be in several different classical states – e.g., ions, and
 - select one of these states as 0 and another one as 1.
- Ions and other physical quantum systems can be in many possible classical states.
- In this usual design of quantum computers, all other classical states are not used.
14. Enter qudits

- To further increase efficiency, a natural idea is thus to utilize these additional states; namely:
 - if we have d different states – which we can mark as states $0, 1, \ldots, d - 1$,
 - then a general quantum state of this system has the form
 \[c_0 |0\rangle + c_1 |1\rangle + \ldots + c_{d-1} |d - 1\rangle. \]

- Here $|c_0|^2 + |c_1|^2 + \ldots + |c_{d-1}|^2 = 1$.

- The states $0, 1, \ldots, d - 1$ can be naturally labeled by the d-base digits.

- Because of this labeling, the corresponding quantum states are called *quantum d-base digits*, or *qudits*, for short.

- It has been shown that the use of qudits can indeed further speed up quantum computations.
15. Need to represent uncertainty by qudits

- Input to computations comes from measurements and expert estimates.
- In both cases, the values we submit to algorithms are known with uncertainty.
- It is therefore desirable to represent the corresponding uncertainty in the form appropriate for quantum computing – i.e.:
 - by using qudits
 - or at least by using their particular case of qubits.
- We will show that many types of uncertainty information can indeed be naturally represented in this form.
16. Case of probabilistic uncertainty

- Let us start with the most traditional type of uncertainty – *probabilistic* uncertainty.
- In general, such an uncertainty means that:
 - we have several \(n \) alternatives – which we can denote by
 \[0, 1, \ldots, n - 1, \]
 - and for each alternative \(i \), we know its probability \(p_i \).
- These probabilities should add up to 1:
 \[p_0 + p_1 + \ldots + p_{n-1} = 1. \]
- A natural qudit representation of this uncertainty means using a qudit with \(d = n \) and taking \(c_i = \sqrt{p_i} \).
- For these coefficients, the condition \(|c_0|^2 + |c_1|^2 + \ldots = 1 \) takes the form \(p_0 + p_1 + \ldots = 1 \) and is, thus, automatically satisfied.
17. Case of probabilistic uncertainty (cont-d)

- Suppose that we have such qudit representations of two independent probabilistic objects, with probabilities p_0, \ldots, p_{n-1}, and q_0, \ldots, q_{m-1}:

 $$c_0|0\rangle + \ldots + c_{n-1}|n-1\rangle \text{ and } c'_0|0'\rangle + \ldots + c'_{m-1}|(m-1)'\rangle.$$

- Then, as one can easily see, the system consisting of these two objects is represented by the tensor product of these two qudit states.

- Indeed, for $c_i = \sqrt{p_i}$ and $c'_j = \sqrt{q_j}$, the probability $|c_i \cdot c'_j|^2$ of getting the state $|i, j\rangle$ is indeed equal to the independence-based value $p_i \cdot q_j$.

18. Case of fuzzy uncertainty: first idea

- In the fuzzy case, for each of n alternatives, we have a degree $\mu_i \in [0, 1]$ with the condition that $\max(\mu_0, \mu_1, \ldots, \mu_{n-1}) = 1$.
- In this case, there seems to be no sequence of numbers that adds to 1.
- To come up with such a sequence, we can use the fact—many times emphasized by Zadeh—that:
 - both fuzzy and probabilistic uncertainty can come from the same set of observations,
 - the only difference is in the normalization.
- In the probabilistic case, we normalize so that the sum is equal to 1.
- In the fuzzy case, we normalize so that the largest value is equal to 1.
19. Case of fuzzy uncertainty: first idea (cont-d)

- This way, we have a natural way to transform probabilities into fuzzy degrees and vice versa:

 - if we know the probabilities p_i, then normalization-to-maximum transforms these values into fuzzy degrees:

 $$
 \mu_i = \frac{p_i}{\max(p_0, p_1, \ldots, p_{n-1})};
 $$

 - similarly, if we know fuzzy degrees μ_i, then normalization-to-sum transforms these values into probabilities:

 $$
 p_i = \frac{\mu_i}{\mu_0 + \mu_1 + \ldots + \mu_{n-1}}.
 $$

- So, a natural way to use qudits to represent fuzzy information μ_0, μ_1, \ldots is:

 - to transform this information into the probabilistic form, and then
 - use the above qudit-based representation of probabilities.
An alternative idea is to use the fact that:

- in the traditional fuzzy logic,
- the degree d_+ to which a statement S is true and the degree d_- to which this statement is false add up to 1.

Thus, we can represent such a pair of degrees by a qubit in which $c_0 = \sqrt{d_+}$ and $c_1 = \sqrt{d_-}$.
21. Case of intuitionistic fuzzy logic

- The alternative idea can also be naturally extended to intuitionistic fuzzy degrees, were $d_+ + d_- \leq 1$.

- In this case, we have $d_+ + d_- + d_0 = 1$, where $d_0 \overset{\text{def}}{=} 1 - d_+ - d_-$ is the degree of indifference.

- To represent such degrees, it is reasonable to use 3-state qudit states $c_0|0\rangle + c_1|1\rangle + c_2|2\rangle$ with $c_0 = \sqrt{d_+}$, $c_1 = \sqrt{d_-}$, and $c_2 = \sqrt{d_0}$.

- Such a representation is even more natural in intuitionistic fuzzy logic of second type (also known as Pythagorean fuzzy logic).

- There, the degrees d_+ and d_- are related by a formula $d_+^2 + d_-^2 = 1$ (or $d_+^2 + d_-^2 + d_0^2 = 1$).

- In this case, we can take $c_0 = d_+$ and $c_1 = d_-$ (and $c_2 = d_0$).
22. Case of picture fuzzy logic

- A similar representation is possible for picture fuzzy degrees in which
 \[d_+ + d_- + d_0 \leq 1. \]

- In this case, \(d_+ + d_- + d_0 + d_u = 1 \), where \(d_u \overset{\text{def}}{=} 1 - d_+ - d_- - d_0 \) is the additional degree.

- To represent such degrees, it is reasonable to use 4-state qudit states
 \(c_0 |0\rangle + c_1 |1\rangle + c_2 |2\rangle + c_3 |3\rangle \) with
 \[c_0 = \sqrt{d_+}, \quad c_1 = \sqrt{d_-}, \quad c_2 = \sqrt{d_0}, \quad \text{and} \quad c_3 = \sqrt{d_u}. \]
23. Case of F-transforms

- A useful notion of *F-transform* is based on families of membership functions $A_0(x), \ldots, A_{n-1}(x)$ for which, for each x, we have
 \[A_0(x) + \ldots + A_{n-1}(x) = 1. \]

- Thus, for each x, we can describe the values of all n basic membership functions by using an n-state qudit with $c_i = \sqrt{A_i(x)}$.
24. Important comment

- In all these examples, we can decrease the number of needed qudit states in half if:
 - instead of considering only real-valued coefficients c_i – as in the current quantum computing algorithms,
 - we allow general complex-valued coefficients $c_i = a_i + b_i \cdot i$, where
 \[i \overset{\text{def}}{=} \sqrt{-1}. \]

- In these terms, since $|a + b \cdot i|^2 = |a|^2 + |b|^2$, the condition that $|c_0|^2 + \ldots + |c_{d-1}|^2 = 1$ takes the form
 \[|a_0|^2 + |b_0|^2 + \ldots + |a_{d-1}|^2 + |b_{d-1}|^2 = 1. \]

- So, e.g., to represent a general picture degree, it is sufficient to use a 2-state qubit $c_0|0\rangle + c_1|1\rangle = (a_0 + b_0 \cdot i)|0\rangle + (a_1 + b_1 \cdot i)|1\rangle$ with
 \[a_0 = \sqrt{d_+}, \quad b_0 = \sqrt{d_-}, \quad a_1 = \sqrt{d_0}, \quad \text{and} \quad b_1 = \sqrt{d_u}. \]
25. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and
 - HRD-1834620 and HRD-2034030 (CAHSI Includes).
- It was also supported by the AT&T Fellowship in Information Technology.
- It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.
- The authors are greatly thankful to Krassimir Atanassov for his encouragement.